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Abstract

Creating and Destroying Rotational Quantum Coherence in a Trapped-Ion Coulomb
Crystal Rotor

by

Neil Glikin

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Hartmut Häffner, Chair

This work presents the techniques used to create a freely rotating trapped-ion Coulomb
crystal and to establish quantum coherent control over this rotational motion. This is done
using a highly symmetric surface ion trap with circular trapping electrodes. We derive how a
trapped-ion rotor couples to coherent laser light, including the motional transition sideband
spectrum and the corresponding coupling strengths. We also show how rotational motion
modifies the coupling of the usual trapped-ion vibrational motion to laser light. In our
experiments, light which is coupled to the rotor’s motion propagates nearly normal to the
trap surface, which is thus also sensitive to vibrational motion in this direction. We thus
also present the design of and benchmark the performance of a Faraday cage which has
successfully protected this motion from harmful electric field noise.

A prerequisite to clean, coherent manipulation of the rotational quantum state of our rotor
is preparing it in a rapidly rotating state with a small uncertainty in its angular momentum.
This rotational state preparation is done with by accelerating a rotating quadrupole field
via time-dependent voltages applied directly to the trap electrodes, resulting in rotation
frequencies of 100’s of kHz with uncertainties within 1 kHz. We show how this procedure
allows for creation of superpositions of angular momentum states, and present considerations
and measurements pertaining to optimizing this procedure. We find that the coherence of
these superpositions is limited by angular momentum diffusion processes induced by coupling
to noisy electric field gradients. Careful measurements of these rotor decoherence dynamics
demonstrate close agreement with the corresponding theory for the first time.

Finally, we present a proposal to use angular momentum superpositions of our trapped
ion rotor as an interferometer in which we may exchange the positions of two ions. This
experiment would serve as a test of the symmetrization of their mutual quantum state, and
would be sensitive to the phase of the exchange operation without requiring the two particles
to coincide spatially. We interpret the physical meaning of this exchange phase measurement
and present detailed considerations of potential errors.
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Chapter 1

Introduction

Trapped atoms have served as highly controllable realizations of quantum mechanical systems
for decades. Their high degree of isolation from their environment allows quantum coherence
to endure for experimentally accessible timescales, their small mass gives them resolvable
quantized energy levels, and their ability to interact with visible laser light gives them a
precise handle for controllably manipulating their quantum state. Trapped ions in particular
furthermore make it possible to work with small numbers of atoms at a time and afford a
high degree of controllability of their motion in the quantum regime. This quantum motion
has proven to be a highly useful tool for fundamental tests of quantum mechanics, as well
as for quantum simulation and quantum computation.

The work done in pursuit of my PhD thesis revolves around using a Coulomb crystals of
trapped ions as a tool for simulating a quantum rotor. Typically, Paul traps confine each ion
to a well-defined equilibrium position, about which it may vibrate with an amplitude that
is much smaller than the distance between ions. In this work, on the other hand, we create
a trapping potential which is highly isotropic within one plane, allowing the entire Coulomb
crystal to freely rotate. This is a novel use of the motion of trapped ions, and as such,
has required the development and implementation of unique tools to prepare and control the
rotational motion. We have used these tools to create superpositions of the quantized angular
momentum states of the rotating Coulomb crystal and to carefully study the coherence of
these superpositions. Our tools furthermore hold promise for performing interesting tests of
fundamental physics with the rich properties of quantum rotors; in particular, we propose
to use a superposition of angular momenta to exchange a pair of ions with each other as a
test of the symmetrization postulate using particles which never occupy the same space.

This document aims to provide documentation of the results and conclusions that I
have reached over the course of my PhD work, as well as a guide for understanding the
often-counterintuitive properties of the trapped-ion rotor within an experimentally useful
framework.

The remainder of this thesis begins with an overview of general techniques for controlling
the quantum state of trapped ions in Chapter 2. Here, special attention is paid to how
trapped ions’ usual vibrational motion interacts coherently with a laser field, as the nov-
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elty of this work relies heavily on an analogous but novel understanding of how quantum
rotational motion interacts with laser light. Chapter 3 continues on to actually apply these
considerations to a trapped-ion rotor, demonstrating the ways in which rotational motion
differs from vibrational motion in the context of interacting coherently with a laser field.

Chapter 4 describes the equipment used in the laboratory for conducting the experiments
in this work. One particular piece of equipment, the Faraday cage, has proven pivotal in
allowing the experiment to be functional. The considerations which informed its design and
the decision to implement it are therefore expanded upon in Chapter 5, which also presents
an evaluation of the Faraday cage’s performance in mitigating harmful electric-field noise.

Chapter 6 discusses how the ion rotor properties established in Chapter 3 allow for co-
herent manipulation of rotational motion in an experimental context. It establishes the
requirements for cleanly preparing rotational superpositions, the tools used to meet those
requirements, and the considerations which go into optimizing the experiments. Chapter 7
details a study of the decoherence of rotational superpositions. It establishes the theory of
how angular momentum diffusion leads to rotational decoherence. It also presents measure-
ments which demonstrate that such diffusion indeed limits the rotational coherence in our
experiment. These measurements are in close agreement with recently-established general
theory work on rotor decoherence dynamics, constituting the first validation of this theory.
Finally, Chapter 8 presents a proposal for an experiment to use rotational superpositions to
test the symmetrization postulate by exchanging a pair of ions. First, an interpretation of
this experiment as a test of fundamental physics is presented. This is followed by a detailing
of considerations of how to bring the experiment into an operating regime which allows the
exchange to be measured, possible error sources, and how to minimize them.
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Chapter 2

Trapping and Controlling the
Quantum State of Atomic Ions

2.1 Motivation

The experimental study of quantum mechanics requires a system which exhibits non-classical
behavior that can be probed. Isolated atoms have long provided such a system, initially as
beams and as gasses confined within a glass cell. The idea of electromagnetically trapping
atoms provided a further step in isolating them from unwanted interactions and in controlling
their motion, especially in allowing the motion to be cooled into a quantum regime [1–3].
This both improves the coherence of laser-based interactions with the atom’s electrons and
allows the motion itself to be studied and used as a quantum mechanical degree of freedom.
Ions in particular are especially susceptible to confinement via their charge, allowing the
use of electric fields, which are straightforward to generate experimentally, as the trapping
mechanism. Two different types of ion trapping mechanism are commonly used [4], the
Penning trap [5], which uses a static electric field and a static magnetic field, and the Paul
trap [6–8], which uses oscillating electric fields. This work uses a Paul trap.

2.2 Paul traps

2.2.1 Operating principle

An object may be trapped by means of applying a restoring force towards some equilibrium
position. Speaking abstractly, this can be achieved with a potential featuring a point which
is a local minimum in all directions. For trapping a charged particle, the most natural choice
for creating a trapping mechanism is with electric fields. However, a static electric field E
must be related to a conservative potential Φ by E = −∇Φ, and in free space this potential
must obey Laplace’s equation ∇2Φ = 0. This forbids a potential minimum in any static
electric field.
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The Paul trap utilizes the following solution to this apparent problem: the applied electric
field, rather than being static, is swept sinusoidally at a frequency ωRF whose corresponding
timescale is faster than the timescale of the motion of the particle. This can allow the
charged particle to be trapped on time-average, while the field still obeys Laplace’s equation
instantaneously at all times. This is the mechanism by which we trap ions. To understand
how this works, it is useful to analyze the motion of an ion in a Paul trap quantitatively.

2.2.2 Motion of a single ion in a Paul trap

In general, a Paul trap operates by applying a potential which is the sum of a sinusoidal
term and a static term, each individually obeying Laplace’s equation. Each of these terms
should have a point at which there is always zero electric field. When a Paul trap is designed
and operated properly, these null points should coincide. We define this to be the origin of
our coordinate system. The leading-order terms of the electric potential around the origin
can be written

Φ(x, y, z, t) =
URF

2
(αx2 + βy2 + γz2) cos(ωRFt)

+
UDC

2
(α′x2 + β′y2 + γ′z2),

(2.1)

where the coefficients satisfy α + β + γ = 0, α′ + β′ + γ′ = 0 by Laplace’s equation. To un-
derstand the dynamics of an ion in such a potential, it suffices to consider the corresponding
equation of motion for one dimension at a time. An ion with charge q and mass m in this
potential will obey the following equation of motion in the x direction:

ẍ = − q

m
[αURF cos(ωRFt) + α′UDC]x, (2.2a)

and corresponding similar equations in the other Cartesian directions. This differential
equation has the form of the Mathieu equation, whose standard form is typically written

d2x

dξ2
+ [ax − 2qx cos(2ξ)]x = 0. (2.2b)

Equation (2.2a) takes the form (2.2b) upon making the substitutions

ξ =
ωRFt

2
, qx =

2qαURF

mω2
RF

, ax =
4qα′UDC

mω2
RF

. (2.2c)

qx and ax are dimensionless parameters describing the strength of the confinement provided
by the RF and DC components of the trapping potential, respectively. We are frequently
most interested in understanding which choice of trapping potential parameters results in
stable trapping. Of these, those which satisfy |ax|, q2

x � 1 are of most experimental interest.
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A treatment of the more general case can be found in Ref. [9]. Under the condition |ax|, q2
x �

1, the solution to (2.2a) takes the approximate form

x(t) ≈ Ax cos(ωxt)
[
1− qx

2
cos(ωRFt)

]
,

where ωx ≡
1

2
ωRF

√
ax + 1

2
q2
x,

(2.3)

where Ax is the amplitude of the motion and depends on the initial conditions. This solution
has two important features, manifested in the two terms. The first is a harmonic motion at
the frequency ωx � ωRF (since |ax|, q2

x � 1 by assumption). The frequency of this motion is
set by both the strength of the RF fields and the DC fields (qx and ax), and is slow compared
to the frequency of the driven RF field. This is known as secular motion. A few points are
worth noting explicitly about the secular frequency ωx:

• ωx depends on the amplitudes of the RF and DC potentials, URF and UDC via qx and ax.
In particular, it depends on ax and on the square of qx, so that an increased magnitude
of the DC potential may either increase or decrease the secular frequency depending
on its sign, while on the other hand an increased magnitude of the RF potential may
only increase the secular frequency, independent of its sign.

• In the special case ax = 0 (no DC contribution), the secular frequency is directly
proportional to the amplitude of the RF drive, and inversely proportional to the drive
frequency: ωx ∝ URF/ωRF. To consider scaling with the ion mass, it is practical to fix
the stability parameter qx, in which case the secular frequency is inversely proportional
to the square root of the ion mass: ωx ∝ m−1/2.

The second term is motion whose amplitude is small (reduced by a factor of qx/2) and
whose frequency (ωRF) is fast compared to that of the secular motion. This is known as
micromotion. If both qx and the amplitude of the motion are sufficiently small, micromotion
may be ignored, and the motion of the trapped particle may be described by its secular
motion alone to a good approximation. This approximation will be used for the remainder
of this work.

Approximating the time-averaged potential of a Paul trap as a static pseudopotential
alone, the quantum mechanical Hamiltonian for the motion of a trapped ion of mass m in
the x-direction becomes simply the standard harmonic oscillator Hamiltonian

Hmotion,x =
p2
x

2m
+

1

2
mω2

xx
2 = ~ωx

(
a†xax +

1

2

)
, (2.4)

where ωx is given by (2.3), and a†x, ax are the usual quantum harmonic oscillator creation
and annihilation operators. Extending this to three dimensions (x, y, z), each of which in

general has its own secular frequency ωi = 1
2
ωRF

√
ai + 1

2
q2
i , the total Hamiltonian of the

motion of a single ion in a Paul trap is that of a three-dimensional harmonic oscillator:

Hmotion = ~ωx
(
a†xax +

1

2

)
+ ~ωy

(
a†yay +

1

2

)
+ ~ωz

(
a†zaz +

1

2

)
. (2.5)
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2.2.3 Surface ion traps

To realize a Paul trap, a set of electrodes with appropriate geometry and corresponding
voltages must be designed which approximately realizes the potential (2.1). Early realizations
of the Paul trap utilized hyperbolic electrodes to create the quadratic potential as precisely
as possible [10]. More modern realizations use electrodes with simpler geometries for ease
of production and assembly, which still create an approximately quadratic potential in a
smaller but large-enough region of space around the trap origin. One popular design is the
4-rod trap [11], with 4 parallel rods in a square configuration. Two rods opposite each other
receive identical RF voltages VRF sin(ωRFt), while the other two are held at ground potential.
This provides RF confinement parallel to the rods, while DC confinement is provided by a
segmented rod or with “end cap” electrodes.

Three-dimensional Paul trap designs such as the 4-rod trap described above are typically
macroscopic (many millimeters) in size and provide a straightforward method of achieving
basic ion trapping functionality. More recently however, the field of ion trapping has devel-
oped research interests which extend beyond that which can be provided by macroscopic ion
traps. Such extended functionality can instead be provided by a surface trap architecture,
which is defined by flat electrodes on a single surface that can be printed onto a chip. The
surface trap architecture was first realized by Refs. [12, 13].

The motivations for using surface traps over macroscopic traps are many, including:

• Miniaturization, which can allow finer control over local DC fields with a larger number
of smaller independent DC electrodes.

• The potential to house multiple independent Coulomb crystals at once, and in turn
the potential to “shuttle” individual ions or chains of ions from one location to an-
other. This may allow scaling to larger number of ions than would be possible with a
macroscopic trap.

• Reproducible, high-precision manufacturing with the help of well-established micro-
fabrication techniques.

• The ability to integrate other components into the trap chip, such as detectors and
optical components.

• The ability to realize complex electrode geometries.

All of these features are invaluable for quantum information processing using trapped ions,
but the finer control allowed by surface traps is also advantageous for other types of trapped-
ion experiments, including those studying fundamental physics. The “ring trap” design used
in this work heavily relies on being able to have circular electrodes whose fabrication precision
allows for a high degree of symmetry.

The surface trap architecture has some disadvantages over macroscopic ion traps. Since
their geometry results in fields which deviate more from the ideal quadrupole potential
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Figure 2.1: (a) Photograph of the ring trap illuminated under yellow light. Each electrode
is marked by its function (RF, DC, or ground). (b) Simulated pseudopotential contour map
for 21.4 MHz drive frequency and 100 V RF amplitude when applied to the second circular
electrode as labeled in (a). The pseudopotential is cylindrically symmetric. The location of
the potential minimum is shown by the white cross.

than those of macroscopic traps, the resulting trapping depth is significantly reduced. This
problem is exacerbated by the fact that RF voltage amplitudes are typically more limited for
fear of electrical breakdown between neighboring electrodes, which can be only micrometers
apart from each other. The miniaturized nature of surface traps also results in small distances
between the trapped ions and the nearest electrode surface, on the order of 100 µm. This
makes the ion highly susceptible to electric field noise originating from the electrodes [14],
which can spoil the cooling that is necessary for many applications. Finally, surface traps
place limits on possible laser beam geometries.

2.2.4 The ring trap

The surface ion trap used in this work, referred to as the “ring trap”, is characterized by its
circular symmetry. While most other ion traps produce an anisotropic pseudopotential such
that ωx 6= ωy 6= ωz, the pseudopotential produced by the ring trap is cylindrically symmetric
ωx = ωy < ωz, where here the z-direction is normal to the trap surface. This allows ion
crystals in the xy-plane to freely rotate. This rotational motion is the scientific basis of all
work in this thesis.

An image of the ring trap is shown in Fig. 2.1(a). The trap is fabricated from boron-doped
silicon, which extrudes to a thickness of 250 µm above a glass substrate. The three circular
center electrodes have outer radii of 125 µm, 600 µm, and 1100 µm. The eight outer electrodes
have outer radii of 3000 µm. The trench between the center electrode and its neighbor is
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15 µm wide, and all others are 25 µm wide. The inner and outer circular electrodes are
internally shorted to each other. More details about the trap design and fabrication can be
found in Refs. [15, 16]. The circular “RF” electrodes create the trapping potential. This is
done by applying RF voltage to the second of the three circular electrodes, and using the
innermost and outermost circular electrodes as a ground reference. The circular electrodes
have a capacitance of 22 pF between them. The outer “DC” electrodes receive DC voltages
for applying static fields, which are used to compensate stray dipole fields which otherwise
result in excess micromotion [17], and to compensate stray quadrupole fields which otherwise
break the cylindrical symmetry. The DC electrodes are also used to apply quadrupole fields
which intentionally break the circular symmetry when desired, such as for ease of electronic
state preparation and for rotating an ion crystal; see Chapter 6. It should be noted that the
configuration of RF voltages discussed here and utilized in the rest of this work differs from
that of Refs. [15, 16]. There, RF is applied instead to the innermost and outermost circular
electrodes, with the second one held at ground. This configuration produces a different
potential, with a toroidal RF null. Here, the pseudopotential has an RF null at a single
point.

The pseudopotential produced by the ring trap is shown in Fig. 2.1(b). Solving for this
pseudopotential is straightforwardly done by numerically computing a single integral for each
RF electrode, owing to the rotational symmetry [18, 19]. The RF null is at the potential
minimum at a height of 181 µm above the surface. We operate the trap at an RF drive
frequency of ωRF = 2π × 21.4 MHz. Application of 100 V amplitude at this drive frequency
results in secular trap frequencies ωx = ωy = 2π × 1.45 MHz in the radial direction and
ωz = 2π × 2.90 MHz normal to the trap surface for 40Ca+ , the ion used in this work.

A DC contribution to the trapping potential may be added by applying an offset bias
to the RF drive, either by applying a DC voltage to the two grounded circular electrodes
or by biasing the mean voltage of the RF drive. The lowest-order term of this contribution
has the form ΦDC(x, y, z) = U2(2z2 − x2 − y2)/2, thus providing a stronger confinement in
the radial direction and weakening the overall confinement in the z-direction, or vice-versa,
depending on the sign of U2. Doing so does not change the equilibrium height of the ion
above the surface.

Instrumentation for providing the RF and DC voltages to operate the ring trap is dis-
cussed in Chapter 4.

2.3 Theory of light-atom interactions

The primary method of controlling the quantum state of trapped atoms in general, including
trapped ions, is by interaction with laser light. This can be done in a coherent manner such
that the purity of the quantum state is (approximately) preserved in order to engineer useful
quantum superpositions, or it can be done in an incoherent manner, involving dissipation,
for the purposes of laser cooling the motion or pumping the internal state. This section
will introduce the physics of such interactions, by first introducing the physics of the light
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and the atoms individually, and then describing how they interact with each other, both
coherently and incoherently. These interactions are the basis of all experiments conducted
in this thesis.

2.3.1 Light

The classical electromagnetic fields E and B, in the presence of a charge density ρ and a
current density J, obey Maxwell’s equations

∇ · E =
ρ

ε0
∇ ·B = 0

∇× E = −∂B

∂t

∇×B =
1

c2

∂E

∂t
+ µ0J,

(2.6)

where ε0 and µ0 are the permittivity and permeability of free space, and c is the speed of
light. Defining the vector potential A along with the scalar potential Φ such that

E = −∇Φ− ∂A

∂t
B = ∇×A,

(2.7)

and defining A in the Coulomb gauge such that ∇ ·A = 0, we find that A obeys the wave
equation

∇2A =
1

c2

∂2A

∂t2
(2.8)

in free space, i.e. when ρ = 0, J = 0. Solutions appear in the form of propagating plane
waves

A(r, t) = − i
2
A
[
ε̂ei(k·r−ωt+φ) − ε̂∗e−i(k·r−ωt+φ)

]
(2.9)

with ω/|k| = c and ε̂ · k = 0. From (2.7), the electric and magnetic fields can then be
computed as

E(r, t) =
1

2
Aω
[
ε̂ei(k·r−ωt+φ) + ε̂∗e−i(k·r−ωt+φ)

]
(2.10a)

B(r, t) =
1

2
A
[
(k× ε̂)ei(k·r−ωt+φ) + (k× ε̂∗)e−i(k·r−ωt+φ)

]
. (2.10b)

Such plane wave solutions are a good approximation of the laser-produced light fields used
in this work. Often we are interested in a few key properties of the electric field of the plane
wave: the frequency ω, the amplitude E = Aω, the polarization vector ε̂, the wavevector k
(related to the frequency by |k| = ω/c), and the phase φ.

The above is a classical description of the electromagnetic field. In general, it may also
be described quantum mechanically. This thesis will not go into a quantitative description
of the quantized electromagnetic field, but two important features which emerge from the
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quantized picture are worth noting. The first is that from the quantized electromagnetic
field emerges the concept of a photon, meaning the the energy of a mode of the field with
frequency ω is quantized to units of ~ω. The second is that interactions between atoms and
the quantum fluctuations of the electromagnetic field in its vacuum (zero-photon) state lead
to spontaneous emission, by which an atom incoherently decays toward its ground state, a
phenomenon which is not present in a purely classical EM field description.

2.3.2 Atoms

The only light-matter interactions of interest in this thesis are those of laser light with
hydrogen-like atoms. Thus this section will only address the physics of isolated hydrogen-
like atoms. Here, “hydrogen-like” means the atom features a single valence electron — it
may have many electrons in total, but one should be significantly more weakly bound than
the rest. It is useful to break the degrees of freedom into two parts: the “motional” (or
“external”) degrees of freedom, and the “electronic” (or “internal”) degree of freedom. The
external degrees of freedom describe the motion of the atom overall in free space. In a Paul
trap, the only motional potential of interest in this thesis, the external degrees of freedom of
a single trapped ion are as described in Sec. 2.2, particularly Eq. (2.5). The internal degree
of freedom describes the motion of the valence electron about the nucleus and inner core of
electrons.

Like any bound quantum mechanical system, a hydrogen-like atom features quantized
energy eigenstates. The most important practical features of these states are the energy itself
and the values of the various corresponding angular momenta, as these properties determine
the properties of the light fields that are necessary to couple the atomic states together.
This subsection outlines how these properties emerge from the atomic structure, namely, the
behavior of the valence electron. This is done first excluding fine-structure effects and then
including them. Hyperfine structure is not considered, since it is not applicable to the atoms
used in this work.

Atomic structure in the electrostatic model

For the electrostatic hydrogen-like model [20], we may assume that the valence electron sees
a spherically symmetric potential U(r), so the Hamiltonian is

HES =
p2

2m
+ U(r), (2.11)

where p is the momentum operator for the valence electron and m is the electron mass.
Here, electrostatic means ignoring magnetic and radiation effects. In solving the Schrödinger
equation, one finds that the eigenstates of this Hamiltonian are indexed by three numbers
n, `,m`, and can be split into a product of two parts, the angular wavefunction and the radial
wavefunction.
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• The angular eigenfunctions are the spherical harmonics Y`m`(θ, φ) (in spherical coordi-
nates), a result which is independent of the potential U(r) (as long as it is spherically
symmetric). The quantum number ` represents the total orbital angular momentum
of the electron, and m` is the projection onto a quantization axis (usually along an
applied external magnetic field).

• The radial eigenfunctions Rn`(r) depend on the spherical radial coordinate only and
depend on the potential U(r).

The energy En` of the eigenfunctions is independent of m` due to spherical symmetry (in the
absence of an external magnetic field). Importantly, the radial eigenfunctions and energies
cannot in general be solved for exactly. The hydrogen atom, with a single proton and a
single electron, is an exception: its potential is UH(r) = − e2

4πε0r
, with energy eigenvalues

En = − me4

2~2(4πε0)2
1
n2 ≈ −13.6 eV

n2 . For hydrogen, the energy eigenvalues are independent of

`, a result of the 1/r scaling of the potential. This is not true for other atoms, including
40Ca+ used in this thesis, whose energies depend on `. However, for most atoms which are not
too heavy, this result is still instructive, as it gives an indication of the order of magnitude
of energy splittings (13.6 eV ∼ 3300 THz in frequency units), as well as the scaling of energy
with −1/n2 which still approximately holds true.

Atomic structure with fine structure

The only correction to the electrostatic model that will be necessary to consider for this
thesis is fine structure. The fine-structure correction arises from the leading order relativistic
correction, and includes three terms: the kinetic term, the Darwin term, and the spin-orbit
term [21]. The first two are purely “orbital” effects and depend only on the orbital angular
momentum quantum number `. The spin-orbit effect, however, importantly modifies the
angular momentum structure relative to the spinless model.

The spin-orbit effect takes into account the spin S of the electron, which in turn cou-
ples magnetically to its own angular momentum L, resulting in a term in the Hamiltonian
proportional to S · L. This means that the total angular momentum J of the system is the
sum of the spin and orbital angular momenta, J = S + L, and hence m` is no longer a good
quantum number; instead, the magnetic quantum number should be the projection of the
total angular momentum onto to the quantization axis, mj. For single-electron atoms, the
electron spin is always 1/2, and therefore the spin-orbit coupling may be thought of in the
following way: A state with a given ` value splits due to spin-orbit coupling into two states,
one in which the spin and orbital angular momenta are parallel giving j = `+ 1/2, and one
in which they are anti-parallel giving j = `− 1/2 (the exception is ` = 0, for which there is
only j = 1/2). The energy difference between these is given by the spin-orbit term of the
Hamiltonian and is roughly of order 1 THz.



CHAPTER 2. TRAPPING AND CONTROLLING THE QUANTUM STATE OF
ATOMIC IONS 12

In total, fine structure corrections may be regarded as a correction term HFS to the
electrostatic model, so that the total Hamiltonian of the atom’s valence electron is

H0 =
p2

2m
+ U(r) +HFS, (2.12)

which is labeled H0 in anticipation of adding an interaction term when a light field is intro-
duced. Including fine structure effects, the atomic eigenstates may be labelled |n, `, s, j,mj〉.
For hydrogen-like atoms, s is always equal to 1/2, but it is included here for completeness.

Zeeman splitting

There are many effects which can shift the energies of the atomic eigenstates of the Hamil-
tonian (2.12), but the Zeeman effect of of the most relevance in this thesis. This couples a
static external magnetic field B to the angular momentum of the electron via its magnetic
moment µ, shifting the energy of the state |n, `, s, j,mj〉 by

∆EZeeman = −µ ·B = −gjµBBmj, (2.13)

where µB is the Bohr magneton, B is the magnitude of the magnetic field, and the Landé
g-factor gj is given by

gj = 1 +
j(j + 1) + s(s+ 1)− `(`+ 1)

2j(j + 1)
(2.14)

In practice, an external magnetic field is applied to define an axis along which the angular
momentum J is quantized, and to split the energies of states which differ only in mj by an
amount on the order of 1 MHz per Gauss.

2.3.3 Coupling of atoms to light

The coupling of an atom to the electromagnetic field results in coupling of the atomic eigen-
states |n, `, s, j,mj〉 to each other. This is the mechanism by which we experimentally engi-
neer the quantum state of the atom; by coupling otherwise stationary eigenstates together,
one may induce transitions between them. It is therefore important to understand the un-
derlying physics in order to predict what transitions are possible, the conditions under which
they may occur, the strength of the coupling, and the coherence of the process. A pertur-
bative expansion of the coupling Hamiltonian due to the light field results in a multipole
expansion, giving rise to a useful categorization of transition types by leading multipole or-
der; transitions of higher leading multipole order are suppressed by a factor of ∼ 104 − 105

in coupling strength.
A description which excludes the motion of the atom in the trap will suffice, as the elec-

tron’s motion about the nucleus takes place on very rapid time scales (transition frequencies
of ∼ 1014 Hz), while the motion of the atom in the trap is comparatively slow (∼ 106 Hz).
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Therefore, the valence electron can respond effectively instantaneously as the nucleus moves
within the trap, so that a perfectly motionless atom is an adequate approximation for de-
scribing the dynamics of the valence electron interacting with light. The effects of atomic
motion may thus be considered separately later.

The light-atom interaction Hamiltonian

In the absence of any interaction, the Hamiltonian of the atom is (2.12). Introducing the
light field modifies the Hamiltonian to approximately [22]

H =
1

2m
[p + eA(r)]2 + U(r) +

e

m
S ·B(r) (2.15)

where the canonical momentum p has been modified to include the vector potential, p →
p + eA(r), and the spin S of the electron may now interact with an external magnetic field
B.

The total Hamiltonian including this interaction is most usefully organized into three
terms, H = H0 +H1 +H2, with H0 given by (2.12) and

H1 =
e

m
[p ·A(r) + S ·B(r)] , (2.16a)

H2 =
e2

2m
A(r)2. (2.16b)

This is an expansion in the coupling of the atom to the field. If the amplitude of the field
is weak compared to that seen by the electron due to the nucleus (as is the case in most
applications), then H2 is small compared to H1, and H1 is small compared to H0. We may
therefore regard H1 as the first-order perturbation expansion, and ignore H2 as higher order.

The multipole expansion of H1

This atom-light perturbation Hamiltonian may couple different atomic eigenstates
|n`sjmj〉 and

∣∣n′`′s′j′m′j〉 together if
〈
n′`′s′j′m′j

∣∣H1

∣∣n`sjmj

〉
6= 0. Computing this matrix

element, or at least predicting its order of magnitude, is therefore important in understanding
possible transitions between a given pair of atomic energy levels.

In the presence of a plane-wave field as in (2.9) and (2.10), the fields A(r) and B(r) have
a constant amplitude, and a phase ei(k·r−ωt). The field therefore varies spatially on a length
scale ∼ 1/k; this is typically much larger than the spatial extent of the radial wavefunction
of the eigenstates being considered in the matrix element, so that k · r� 1. This allows for
an expansion of H1 in k · r. Using (2.16a) for H1 and (2.9) and (2.10) for the fields, this
expansion takes the form [22]

H1 =
eA

2m
(p · ε̂)e−iωt + h.c.

+
ieA

2m
[(p · ε̂)(k · r) + S · (k× ε̂)] e−iωt + h.c.

+ higher-order terms.

(2.17)
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This is the multipole expansion: the first term is the electric dipole term, and the second is
the sum of the electric quadrupole term and magnetic dipole term, which are of the same
order.

A typical order of magnitude for the factor k · r is 10−4 (averaged over the operator r
along the spatial extent of the electron’s wavefunction). S · (k × ε̂) is of the same order
relative to p · ε̂. Therefore, in evaluating H1, it is often a good approximation to consider
only the leading order contribution in the multipole expansion, and in turn, the leading
order term for any given transition of interest has significant impact on the corresponding
transition rate. For this reason, the most important classification of atomic transitions is by
their leading multipole order.

The work in this thesis uses only electric dipole (E1) transitions and electric quadrupole
(E2) transitions, and thus these are the only types of transitions considered here. Other
trapped-ion work commonly uses magnetic dipole (M1) transitions, two-photon Raman tran-
sitions, or sometimes electric octupole (E3) transitions.

It can be shown that the electric dipole term of the the light-matter interaction Hamil-
tonian H1 can be written as the interaction of the electric field with the dipole moment of
the atom:

HE1
1 = −E · er, (2.18a)

and that the electric quadrupole term can be written as the interaction of the gradient of
the electric field with the quadrupole moment Qij = rirj − 1

3
r2δij:

HE2
1 =

1

2
∇iEj eQij. (2.18b)

In general, each multipole term has associated with it a spherical tensor operator in space
(e.g. r for E1 and Q for E2), whose rank increases as the multipole order of interest increases.

Selection rules

In classifying atomic transitions it is useful to be able to predict, without needing to carry out
a full calculation, which multipole order a transition will be. Rules of symmetry via parity
and angular momentum addition provide convenient shortcuts for this known as selection
rules. Selection rules for E1 and E2 transitions are shown in Tab. 2.1. If a transition
violates a selection rule, it guarantees that the corresponding multipole term vanishes, but
the converse is not necessarily true. For example, for the special case of a j = 0 → j′ = 0
transition, the condition ∆j = 0 holds, but E1 and E2 terms will still both vanish due to
angular momentum addition rules. In general, the change in angular momentum quantum
numbers is what determines the multipole order of a transition.

Driven and spontaneous atomic transitions

A coherent light field with well-defined frequency such as that from a laser will drive tran-
sitions between two eigenstates |n`sjmj〉 and

∣∣n′`′s′j′m′j〉 (or |a〉 and |b〉 for brevity) whose
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Multipole order Selection rules
E1 ∆` = ±1, ∆j = 0,±1, ∆mj = 0,±1
E2 ∆` = 0,±2, ∆j = 0,±1,±2, ∆mj = 0,±1,±2

Table 2.1: Selection rules for the E1 and E2 terms of the atomic transition multipole expan-
sion. These are necessary conditions for the corresponding terms to be nonzero.

energy difference is ~ωab if the light field is resonant, i.e. the light field frequency ω matches
the atomic transition frequency: ω = ωab. The populations of the two states will exchange
sinusoidally, at a frequency Ω known as the Rabi frequency given by

Ω =
〈b|H1|a〉

~
=


eE

~
ε̂ · 〈b|r|a〉 , E1 transitions

e∇E

2~
ε̂k̂ 〈b|Q|a〉 , E2 transitions.

(2.19)

Note that the Rabi frequency is directly proportional to the amplitude of the light field, and
also depends its geometry via its polarization vector ε̂ and its wavevector k. A more detailed
recipe for computing these matrix elements can be found in Ref. [23].

Even in the absence of an external light field, atomic eigenstates which are not the
ground state have a finite lifetime due to spontaneous emission, which occurs due to the
coupling of the atom to the quantized electromagnetic field. A description of the quantized
electromagnetic field is beyond the scope of this work, but the result is as follows: Letting
|b〉 be the upper of the two states of interest, the spontaneous emission rate is written as Γb,
and the lifetime is τb = 1/Γb. The spontaneous emission rate is directly related to the atomic
matrix element for the corresponding multipole order. For electric dipole transitions:

Γb =
e2ω3

ab

3πε0~c3
| 〈b|r|a〉|2, (2.20a)

and for electric quadrupole transitions [23],

Γb =
e2ω5

ab

60πε0~c5
| 〈b|Q|a〉|2. (2.20b)

Both the Rabi frequency Ω and the spontaneous emission rate Γb are related to the matrix
element 〈b|T |a〉, where T is the appropriate spherical tensor operator for the multipole
order of the transition. In practice, the matrix element often cannot be computed from first
principles, as it is in general not possible to solve for the radial part Rn`(r) in atoms more
complex than hydrogen. Instead, state lifetimes are experimentally measured directly.

Two-level transitions with a long lifetime will also have a slower Rabi frequency. As an
example, we can consider the transition from the state 4S1/2(m=−1/2) to 3D5/2(m=−1/2)
in 40Ca+ , the ion used in this thesis. This is the common spectroscopic notation for the states
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which in the previous notation would be written as |n = 4, ` = 0, s = 1/2, j = 1/2,mj = −1/2〉,
|n′ = 3, ` = 2, s = 1/2, j = 5/2,mj = −1/2〉. This is an E2 transition; its wavelength is
729 nm, and its spontaneous emission rate is ΓD5/2

≈ 0.8 s−1. A 30 mW 729 nm beam focused
to a Gaussian waist 10 µm in diameter, whose polarization and wavevector are optimized for
coupling to this transition, would drive it at a rate Ω = 2π × 1 MHz. In comparison, if we
instead consider the 4S1/2(m=−1/2) to 4P1/2(m=−1/2) E1 transition at 397 nm, the same
Rabi frequency can be achieved with a laser power of merely 5 nW.

The pronounced difference makes E1 and E2 transitions useful for different processes. In
summary:

• Electric dipole transitions have a short lifetime and are therefore useful for incoherent
processes, in which the upper state lifetime 1/Γb is much shorter than the timescale of
the process of interest. Here, spontaneous emission dominates and photons are quickly
scattered by the atom from the laser field.

• Electric quadrupole (and other) transitions have a long lifetime and are therefore useful
for coherent processes, in which Ω � Γb. Here, spontaneous emission may be negli-
gible, and quantum coherent effects can be engineered and measured. Driving these
transitions generally requires a few orders of magnitude more laser power than E1
transitions.

The following section outlines basic dynamical processes of such coherent and incoherent
light-atom interactions.

2.4 Light-atom interaction dynamics

This section will introduce the dynamics of both coherent and incoherent light-atom interac-
tions, eventually including as well the overall motion of the ion in the Paul trap, which is also
an important element in the experiments performed here. The discussion will be restricted
to the case of only two atomic energy levels |a〉 and |b〉, with a single laser field (at least
nearly) resonant with their transition frequency ωab.

2.4.1 Coherent interactions, excluding ion motion

In the simplest case, with two atomic energy levels where spontaneous emission can be
neglected (because e.g. they are connected via an electric quadrupole transition so that the
upper state exhibits a slow decay rate), it is instructive to write the atomic Hamiltonian in
the absence of a light field, H0, in the {|a〉 , |b〉} basis:

H0 = −1
2
~ωab |a〉〈a|+ 1

2
~ωab |b〉〈b| (2.21)

.
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Introducing the laser field adds H1 (2.16a) to the Hamiltonian, coupling the two energy
levels with some Rabi frequency Ω, defined by (2.19). The Hamiltonian for this interaction
in the {|a〉 , |b〉} basis is

H1 = (Ω |b〉〈a|+ Ω∗ |a〉〈b|) cos(ωt− φ). (2.22)

We may choose phases such that Ω = Ω∗ and φ = 0, for convenience.
The total Hamiltonian for coherent interactions can be written as a 2× 2 matrix:

H = H0 +H1 =
1

2
~
(
−ωab Ω cos(ωt)

Ω cos(ωt) ωab

)
(2.23)

The dynamics are more easily analyzed in a “rotating frame”, defined by the unitary trans-
formation

U(t) = e−i
1
2
ωt(|b〉〈b|−|a〉〈a|). (2.24)

The unitary transformation transforms the Hamiltonian as H → U †HU + i~U̇ †U , yielding
the new rotating-frame Hamiltonian

H =
1

2
~
(

ω − ωab Ω (1 + e2iωt)
Ω (1 + e−2iωt) −(ω − ωab)

)
(2.25)

Here we can invoke an approximation to get rid of the remaining time-dependence, the
“rotating wave approximation” (RWA). This comes from the observation that the Rabi
frequency (∼ kHz – MHz) is nearly always significantly slower than the laser frequency
(∼ 100 THz). Therefore, on the timescale of the dynamics ∼ 1/Ω, the e±2iωt terms will
rapidly oscillate and average to zero; thus we neglect them in the RWA. Doing so gives the
Hamiltonian

H ≈ 1

2
~
(
ω − ωab Ω

Ω −(ω − ωab)

)
=

1

2
~
(

∆ Ω
Ω −∆

)
, (2.26)

where ∆ is defined as the difference between the laser frequency and the transition frequency
and is known as the detuning.

The most basic dynamics problem is to suppose that the system begins in the state |a〉
initially and, at time t = 0, begins evolving under the Hamiltonian (2.26) (due to e.g. the
laser being turned on at that time). The quantity of interest is the probability that the
system, after a time t, is found to have transitioned to the state |b〉 upon measurement.
From the Schrödinger equation, this can be solved for exactly:

Pb(t) =
∣∣ 〈b|e−iHt|a〉∣∣2 =

Ω2

Ω2 + ∆2
sin2

(
1

2

√
Ω2 + ∆2 t

)
. (2.27)

The transition probability oscillates at a frequency
√

Ω2 + ∆2, with an amplitude
Ω2/(Ω2 + ∆2). On resonance (∆ = 0), the frequency of these oscillations is equal to the
Rabi frequency and the transition probability reaches unity after a time t = π/Ω. If the
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Figure 2.2: Ideal 2-level Rabi oscillations for various detunings, which are quantified in terms
of the Rabi frequency.

laser frequency does not quite match the transition frequency so that ∆ 6= 0, the maximum
transition probability falls short of unity. Quantitatively, a laser field is nearly resonant if
∆� Ω. Far from resonance, the transition probability is small.

In a more complete picture in which the system has more than two energy levels, off-
resonant effects may need to be considered even when resonantly addressing one transition.
The effect of having an off-resonant transition while addressing another should be accounted
for if the detuning to the off-resonant transition is comparable to its corresponding Rabi
frequency. Off-resonant effects can become important, for example, when addressing a mo-
tional sideband of an electronic transition, as the motional sideband frequencies and the
electronic carrier transition Rabi frequencies can both be on the same order ∼ 1 MHz.

2.4.2 Incoherent interactions, excluding ion motion

In addition to coherent dynamics, atomic states can also experience decoherence. In the
two-level picture, there are two important ways in which this can occur:

• An external imperfection decays the coherence between the states |a〉 and |b〉, such as a
noisy external magnetic field which randomly shifts the energies and thereby dephases
the rate of coherent evolution, or a noisy laser frequency which effectively causes similar
dephasing effects.

• Spontaneous emission, a fundamental effect caused by coupling of the upper state to
the quantized electromagnetic field, which causes the population of the upper state to
decay into the lower state and also decays the coherence between them.
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It will suffice to consider these effects in terms of the spontaneous emission rate Γb given by
(2.20), and an additional dephasing rate γab which accounts for possible imperfections.

The Lindblad master equation which describes spontaneous emission and dephasing gives
rise to a coupled set of equations for the elements of the density matrix of the system, which
includes the populations ρaa, ρbb (ρaa + ρbb = 1) and the coherences ρab = ρ∗ba. These are the
optical Bloch equations:

ρ̇bb = −Γbρbb +
i

2
Ω∗ρba −

i

2
Ωρab (2.28a)

ρ̇aa = Γbρbb −
i

2
Ω∗ρba +

i

2
Ωρab (2.28b)

ρ̇ab = −
(

Γb
2

+ γab

)
ρab − i∆ρab −

i

2
Ω∗(ρbb − ρaa) (2.28c)

ρ̇ba = −
(

Γb
2

+ γab

)
ρba + i∆ρba +

i

2
Ω(ρbb − ρaa) (2.28d)

In the absence of decoherence effects Γb and γab, these equations reproduce the coherent
2-level light-matter interaction Hamiltonian (2.26). Dissipation from spontaneous emission
can be thought of as the atom randomly emitting a photon into free space after absorbing
one from the driving field, which has the effect of driving the state down from |b〉 to |a〉,
damping the dynamics.

A quantity that is often of interest is the scattering rate of photons at the equilibrium
state where the rate of photon absorption from the driving field is balanced by the rate of
spontaneous emission. In the absence of any additional dephasing, this will be given by

Rscatter = Γbρbb = Γb
Ω2

2Ω2 + Γ2
b + 4∆2

=
Γb
2

s

1 + s+
(

2∆
Γb

)2 , (2.29)

where s ≡ 2Ω2/Γ2 is known as the saturation parameter, and measures the driven transition
rate due to the laser in comparison to the maximum possible driving rate, which is limited
by the damping Γb [9]. The scattering rate is important for processes which utilize photon
scattering, for example to cool the motion of the atom.

2.4.3 Coherent interactions, including ion motion

Up to here, Secs. 2.3 and 2.4 have included only a single degree of freedom, that of the valence
electron moving around the nucleus. In the field of trapped ions, the quantum mechanical
motion of the ion within the trap is considered equally important.

As described in Sec. 2.2, the quantum mechanical motion of a single trapped ion may be
described as a three-dimensional quantum harmonic oscillator, with mode frequencies ωx,
ωy, ωz, and corresponding annihilation operators ax, ay, az. It will suffice to consider only
one of these degrees of freedom, say the x-direction, dropping for convenience the subscript
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on the creation/annihilation operators which we write as a† and a (we keep the x subscript
in the mode frequency ωx to distinguish it from the laser frequency ω).

To account for ion motion in the atom-light dynamics, we must modify the Hamiltonian
(2.23) in two ways: (1) the interaction-free Hamiltonian H0 must include the Hamiltonian of
the harmonic-oscillator motion of the ion’s center of mass ~ωx(a†a+ 1/2), and (2) the factor
cos(ωt) for the light field in the interaction Hamiltonian must now include the position-
dependence, modifying it to cos(kxx− ωt). The Hamiltonian reads

H = H0 +H1,

H0 = ~ωx(a†a+ 1
2
) +

1

2
~ωab (|b〉〈b| − |a〉〈a|)

H1 = ~Ω (|b〉〈a|+ |b〉〈a|) cos(kxx− ωt).
(2.30)

Writing the position operator x in terms of the harmonic oscillator creation and annihi-
lation operators,

kxx = kx

√
~

2mωx
(a+ a†) = η(a+ a†),

η ≡ kx

√
~

2mωx
.

(2.31)

Here, m now stands for the mass of the ion, rather than the mass of the electron. This
defines the Lamb-Dicke parameter η, which can be regarded as the ratio between the spatial
extent of the ground-state wavefunction of the ion motion and the laser wavelength divided
by 2π. More precisely, it also accounts for the wavevector’s projection onto the direction of
the ion motion, since only the component kx enters the definition. Often η � 1, making it
a good expansion parameter.

It is useful to transform into the interaction picture, a rotating frame defined by the
unitary transformation U = e−iH0t/~, where H0 now includes both the internal and motional
Hamiltonians. The transformed Hamiltonian is HI = U †H1U . Applying this transformation,
as well as a rotating wave approximation as in (2.26),

HI =
1

2
~Ω
(
|b〉〈a| eiη(aeiωxt+a†e−iωxt)e−i∆t + |a〉〈b| e−iη(aeiωxt+a†e−iωxt)ei∆t

)
=

1

2
~Ω
(
|b〉〈a| eiη[ã(t)+ã†(t)]e−i∆t + |a〉〈b| e−iη[ã(t)+ã†(t)]ei∆t

)
,

(2.32)

where ã(t) ≡ U †aU = aeiωxt is the annihilation operator in the interaction picture.
To analyze the implications of this Hamiltonian, we can consider a particular matrix

element describing a transition from an initial state |a, n〉 to a final state |b, n′〉, where |a〉
and |b〉 are the two electronic states of interest and |n〉 and |n′〉 are Fock states of the
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harmonic motion:

〈b, n′|HI |a, n〉 =
1

2
~Ω 〈n′|eiη[ã(t)+ã†(t)]|n〉 e−i∆t

=
1

2
~Ω 〈n′|eiη(a+a†)|n〉 ei(n−n′)ωxte−i∆t

=
1

2
~Ω 〈n′|eiη(a+a†)|n〉 e−i[∆−(n′−n)ωx]t

(2.33)

We can see that resonance (vanishing time-dependence) occurs when ∆ = (n′ − n)ωx;
that is, the laser detuning from the electronic transition is equal to a multiple of the trap
frequency ωx that matches the difference in motional quanta between |n′〉 and |n〉. This is a
manifestation of the conservation of energy; on resonance, the energy of the laser’s photon is
equal to the sum of the electronic energy difference ~ωab and the motional energy difference
(n′ − n)~ωx.

If the trap frequency ωx is large enough to exceed the Rabi frequency Ω, then a laser
tuned to a frequency ωab + ∆nωx, where ∆n is an integer, incident on a trapped ion with
initial internal and motional initial state |a, n〉 will drive the transition |a, n〉 → |b, n+ ∆n〉
in a manner equivalent to any other two-level system, as analyzed previously. The difference
when considering the ion’s motional degree of freedom is only that the frequency of the Rabi
oscillations in this case is now Ω 〈n+ ∆n|eiη(a+a†)|n〉. Explicitly,

〈n+ ∆n|eiη(a+a†)|n〉 = i∆ne−η
2/2η|∆n|L(|∆n|)

min(n,n+∆n)(η
2)

(
n!

(n+ ∆n)!

)sign(∆n)/2

(2.34)

where L
(k)
m (x) is the associated Laguerre polynomial. If η is small,

eiη(a+a†) ≈ 1 + iη(a+ a†)− η2

2
(a+ a†)2 + ... (2.35)

In the Lamb-Dicke regime, where the ion is cold enough such that η2(2n+ 1)� 1,

〈n|eiη(a+a†)|n〉 ≈ 1− η2 (2.36a)

〈n+ 1|eiη(a+a†)|n〉 ≈ iη
√
n+ 1 (2.36b)

〈n− 1|eiη(a+a†)|n〉 ≈ iη
√
n (2.36c)

The previous few paragraphs have broken the result (2.33) into two factors:

• The coupling strength Ωn,n′ = Ω 〈n′|eiη(a+a†)|n〉, which determines the Rabi frequency

of the particular transition. The matrix element 〈n′|eiη(a+a†)|n〉 is given exactly by
(2.34), and approximately by (2.36) in the Lamb-Dicke regime. The coupling strength
depends on the laser intensity through Ω, and is independent of the laser frequency.



CHAPTER 2. TRAPPING AND CONTROLLING THE QUANTUM STATE OF
ATOMIC IONS 22

−2 −1 0 1 2

Sideband order

0.0

0.2

0.4

0.6

0.8

1.0

E
x
ci

ta
ti

on
(a

.u
.)

n = 0

n = 5

n = 100

Figure 2.3: Schematic sideband spectra showing coupling strengths for different sideband
orders at different starting values of the motional quantum number n, for η = 0.2. The
height of the peaks shown is the square of the magnitude of the relative coupling strength
(2.34). Within the Lamb-Dicke regime, sideband coupling strength falls off with sideband
order, and sidebands get stronger with increasing n. n = 100 is beyond the Lamb-Dicke
regime, and coupling strength is no longer monotonic in sideband order.

• The time-dependent phase e−i[∆−(n′−n)ωx]t, which encodes the resonance condition,
and defines the detuning with respect to the transition being considered: δ = ∆ −
(n′ − n)ωx. This depends on the laser frequency through ∆, and is independent of
the laser intensity. The resonance condition is related to energy conservation: on res-
onance, the ion’s motion gains energy exactly equal to the energy from the photon
~∆nωx which is in excess from the electronic transition energy ~ω (or loses energy if
∆n < 0).

Resonances which change the motional quantum number n are known as motional side-
bands transitions, and the resonance which does not affect motion is known as the carrier
transition. Sidebands which subtract motional quanta are known as red sidebands, and
those which add motional quanta are known as blue sidebands. Experimentally, a sweep of
the laser frequency about the carrier frequency reveals peaks at frequency offsets from the
carrier equal to integer multiples of the trap frequency. The height of these sideband peaks is
related to the corresponding matrix element. Fig. 2.3 shows some example sideband spectra.

Rather than a Fock state, which is an energy eigenstate, a more realistic initial state
for the motion of the ion is a thermal state, which is a statistical mixture of many Fock
states. Since the matrix element 〈n+ ∆n|eiη(a+a†)|n〉 will differ for different values of n,
the resulting dynamics will be in turn an incoherent superposition of Rabi oscillations at
different frequencies. Such a thermal state may be characterized by the average Fock state
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Figure 2.4: Resonant Rabi oscillations for temperatures n̄ = 0.2, 4, and 100 on (a) the
first red sideband, (b) the carrier, and (c) the first blue sideband, with bare electronic Rabi
frequency Ω = 2π × 100 kHz and Lamb-Dicke factor η = 0.1.

occupation n̄. The full distribution is given by the probabilities

Pn =
n̄n

(n̄+ 1)n+1
, (2.37)

which dictates the appropriate weightings of each state |n〉 when computing the dynamics.
For example, the observed Rabi oscillations will be weighted averages of those of individual
Fock-state transitions, resulting in damping. The measured excitation probability for such
a case on the ∆nth sideband will be given by

Pb(t) =
∑
n

Pn
Ω2
n,n+∆n

Ω2
n,n+∆n + δ2

∆n

sin2

(
1

2

√
Ω2
n,n+∆n + δ2

∆n t

)
. (2.38)

Some thermal Rabi oscillations are shown in Fig. 2.4.
The dynamics of this section have assumed that the ion motion is harmonic-oscillator

like, which is typical for trapped ions. However, much of the novelty of the work in this thesis
relies on ion motion which is rotor-like, rather than oscillator-like. Chapter 3 will focus on
an analogous treatment of trapped-ion motion for the case of a rotor.

2.4.4 Incoherent interactions, including ion motion

In a classical picture of trapped-ion motion, the ion oscillates sinusoidally at the trap fre-
quency ωx, with a period 2π/ωx ∼ 10−6 s. Spontaneous emission from an electric dipole
transition occurs on a much faster timescale ∼ 10−8 s; therefore, during the process of ab-
sorbing and emitting a photon from a laser field which is nearly resonant with an electric
dipole transition, the ion velocity remains approximately constant. An alternative but equiv-
alent viewpoint is one from frequency space: for electric dipole transitions and for typical
trapping parameters, the rate of spontaneous emission ∼ 108 Hz is much larger than the
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trap frequency ∼ 106 Hz, Γb � ωx, so that the transition is broadened in frequency space by
the dissipation so much that individual sideband transitions are not resolved. This justifies
the treatment of ion motion with incoherent interactions as semi-classical, where the ion’s
motion need not be quantized. The effect of the laser radiation on the ion’s motion may be
regarded as a force, which on time-average is equal to the momentum of each photon times
the rate of photon absorption. For a laser whose wavevector projection onto the x-direction
is kx,

Fx = mv̇x = ~kxΓbρbb, (2.39)

where ρbb is the equilibrium excited state probability. The motion of the ion affects this
equilibrium in turn via a Doppler shift, leading to a set of coupled differential equations
for the ion’s velocity. If the ion is moving with velocity vx in the x-direction, the effective
detuning of the laser as seen by the ion in its frame of motion shifts from ∆ to ∆ − kxvx.
The equilibrium excited state probability is then given by a modified version of (2.29):

ρbb =
Ω2

2Ω2 + Γ2
b + 4(∆− kxvx)2

. (2.40)

Combining these equations,

Fx = mv̇x = ~kxΓb
Ω2

2Ω2 + Γ2
b + 4(∆− kxvx)2

. (2.41)

With proper choice of ∆ < 0, this velocity-dependent force can lead to cooling, described
more in Sec 2.6. This force results from the absorption of laser photons by the ion, but
at equilibrium, spontaneous emission of photons also occurs at an equal rate. Unlike the
absorbed photons, the direction of the emitted photons, and hence the direction of their
resulting momentum kick to the ion, is random. This leads to momentum diffusion which
heats the ion, offsetting the cooling process. The random timing of the discrete absorption
events from the laser also contributes to diffusion. If the ion velocity is not too large, then
the rate of heating of the ion’s motion due to this diffusion is given by

Ėh =
(~k)2

2m
Γbρbb|v=0(1 + ξ) (2.42)

where ξ = 2/5 is a geometric factor accounting for the spatial pattern of the dipole radiation
[9].

2.5 The 40Ca+ ion

The atomic ion used for the work in this thesis is 40Ca+ , singly ionized calcium with a mass of
40 amu. This atom has the hydrogen-like atomic structure described in Sec. 2.3, since neutral
calcium is an alkaline earth metal with two valence electrons, leaving singly ionized calcium
with only one. Beyond this highly desirable property, choosing an atomic species for ion
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Figure 2.5: 40Ca+ level structure. Energy levels are shown along with their lifetime. The
qubit states S1/2 and D5/2 are additionally labeled with their Landé g-factors, and their
Zeeman sublevels are also shown. Solid lines show laser transitions and are denoted with their
corresponding wavelengths. Wavy lines indicate E1-allowed spontaneous decay pathways,
with each labeled with the probability of decay via that pathway [24].

trapping experiments involves a number of trade-offs. Among the most desirable properties
in an ion species are atomic transition frequencies whose corresponding laser wavelengths are
convenient, and an energy level structure which is useful both for state preparation and for
quantum coherent operations. 40Ca+ features zero nuclear spin and therefore no hyperfine
structure. This eliminates the possibility of using a pair of hyperfine levels as a qubit, but
greatly simplifies the level structure. The two levels used as the qubit are connected by an
electric quadrupole transition at 729 nm, a technologically convenient visible red wavelength.

2.5.1 Level structure

Fig. 2.5 shows the energy levels of 40Ca+ which are relevant for work in this thesis. Each
energy level is labelled in spectroscopic notation in terms of its quantum numbers by n2s+1[`]j,
where s = 1/2 always and ` = 0, 1, 2 is labelled S, P,D, respectively. Each splits into
2j + 1 Zeeman sublevels with quantum numbers mj = −j,−j + 1, ...+ j. The most relevant
transitions, their wavelengths, energy level lifetimes, and spontaneous decay branching ratios
are shown.

For experiments done in this thesis, the applied external magnetic field is of the order of
a few Gauss (10−4 T), resulting in a Zeeman shift of all levels on the order of a few MHz. The
linewidth of all E1 transitions considered here is of order 10 MHz and therefore greater than
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the Zeeman shift, while the linewidth of the S1/2 ↔ D5/2 transition is significantly narrower
(order 100 mHz). Thus, any driven E1 transition is not selective of sublevels except for
polarization considerations, but Zeeman sublevels may be easily resolved on the S1/2 ↔ D5/2

transition.
The S1/2 ground state is used as the starting point for any experiment, as well as for

nearly any individual process that takes place within the experiment. It is the only truly
stable level in the subspace considered here; D3/2 and D5/2 are only metastable, lasting for
about 1 s.

2.5.2 Lasers

The transitions shown with solid arrows in Fig. 2.5 indicate transitions that we drive with
lasers. There are four in total. Three of these are E1: S1/2 ↔ P1/2 (397 nm), D3/2 ↔ P1/2

(866 nm), and D5/2 ↔ P3/2 (854 nm). The other is E2: S1/2 ↔ D5/2 (729 nm). The laser
power requirement for driving E1 transitions is roughly enough to reach saturation intensity,
and that for driving the E2 transition is enough to have a useful Rabi frequency, of order
100 kHz. To satisfy this, assuming the beams are focused to a waist size on the order of
10 µm, we require on the order of 10 µW of power for the lasers for the E1 transitions, and
on the order of 1 mW of power for the 729 nm E2 transition.

2.6 Useful light-atom processes for quantum state

engineering in 40Ca+

The light-atom interaction dynamics described in Sec. 2.4 are the building blocks for de-
signing processes which can be used to engineer the quantum state of a trapped ion or a
crystal of many trapped ions, including both their internal electronic states and the exter-
nal motional states. This section describes the most basic and common of these processes:
pumping, cooling, coherent manipulation, and state readout. It then describes how these
are put together into full quantum state experiments.

2.6.1 Optical pumping

A typically important stage of any quantum state engineering experiment is the preparation
of the electronic state into a pure energy eigenstate. The simplest and most widely used
technique is known as optical pumping. Here, a laser drives population from state |a1〉 to
state |b〉, which subsequently quickly decays into either |a1〉 or |a2〉. The pumping depletes
population from |a1〉 and builds population in |a2〉.

In 40Ca+ , we often want to pump the state from a mixture of the two S1/2 sublevels (e.g.
after cooling) into a pure state of one of them (e.g. for coherent operations). For optical
pumping, the 729 nm laser is used since the S1/2 ↔ D5/2 transition is narrow enough to
resolve the two S1/2 sublevels. However, this is a slow E2 transition, so the 854 nm laser
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is additionally used to quench the transition by introducing a strong coupling from D5/2 to
P3/2, which may quickly decay back to S1/2. P3/2 may also decay to D3/2, so the 866 nm
laser is also used to pump out of the D3/2 state.

Instead of 729 nm light, one may alternatively use σ-polarized 397 nm light for optical
pumping of the S1/2 state, though this method is not used in this work. Using 397 nm σ
light makes use of only an E1 transition and is thus significantly faster. However, it requires
that the light is either σ+ or σ− polarized, which places significant restrictions on the angle
between the 397 nm wavevector and the external magnetic field. Optical pumping using
729 nm light is frequency-selective and thus requires no strict polarization, making it simpler
to implement and maintain. This is particularly true in this work where the applied magnetic
field is created by permanent magnets rather than current-carrying coils, as magnets are not
easily reconfigurable.

2.6.2 Cooling

For quantum state engineering, we wish to have clean coherent operations in order to easily
prepare a quantum state of interest. A prerequisite to this is for the motion of the trapped
ion to be cooled. From a semi-classical point of view, this is because the laser fields used
for coherent operations have a position-dependent phase. A moving trapped ion has a time-
dependent position and therefore sees a time-dependent laser phase as it moves through the
laser field; if this motion is thermal, then this time-dependent phase is random, degrading
the coherence of the laser-ion interaction. Two types of cooling of the motion of trapped
ions are used in the work in this thesis, Doppler cooling and resolved-sideband cooling (aka
simply sideband cooling) [25, 26]. These are used in stages; Doppler cooling works at high
initial temperatures but is limited in its minimum final temperature, while sideband cooling
requires a low initial temperature but can cool ion motion very close to its ground state.
For some experiments, the ion needs only to be at a Doppler-cooled temperature, while for
others, sideband cooling is necessary.

Doppler cooling

Doppler cooling exploits the Doppler effect in a laser-ion interaction where spontaneous
emission is present, in which the effective frequency of the light as seen by the ion is shifted
by its velocity, as in (2.40). For sufficiently small velocities, the expression for the resulting
force (2.41) can be linearized around vx = 0. In terms of the saturation parameter s,

Fx ≈ Fx|v=0 +
4~k2

x∆

Γ

s

[1 + s+ (2∆/Γb)2]2
vx. (2.43)

If ∆ < 0, the coefficient of the linear term will be negative, so that this force provides
a viscous drag. The rate of energy loss due to this force, averaged over many harmonic
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oscillation periods, is given by

Ėdc = 〈Fxvx〉 =
4~k2

x∆

Γ

s

[1 + s+ (2∆/Γb)2]2
〈v2
x〉 (2.44)

since 〈vx〉 = 0 but 〈v2
x〉 6= 0. When this cooling rate is balanced with the heating rate due

to diffusion (2.42), a steady-state temperature can be computed [9]:

kBT = m
〈
v2
x

〉
=

~Γb
8

(1 + ξ)

[
(1 + s)

Γb
2∆

+
2∆

Γb

]
. (2.45)

This temperature is minimum when the detuning is set to ∆ = −Γb
√

1 + s/2:

kBTDoppler =
~Γb
√

1 + s

4
(1 + ξ), (2.46a)

n̄Doppler =
Γb
√

1 + s

4ωx
(1 + ξ), (2.46b)

where ξ = 2/5. Note that the saturation parameter s remains a variable; the final tempera-
ture may be minimized by using as little laser power as possible, but this comes at the cost
of a slower cooling rate and therefore a longer Doppler cooling duration. In practice one
will often choose the minimum laser power necessary to achieve the Doppler limit within a
desired time frame.

In 40Ca+ , Doppler cooling is most easily performed on the S1/2 ↔ P1/2 transition at
397 nm. The P1/2 state is the lowest-lying level above S1/2 with an E1 transition connecting
it to S1/2. The P1/2 state is not guaranteed to decay back into S1/2, but rather may also decay
into the long-lived D3/2 state with probability 0.065. Thus during cooling, an additional
laser at 866 nm is used to pump population out of the D3/2 state so that it remains in the
S1/2 ↔ P1/2 cycle for cooling.

866 nm Doppler cooling in 40Ca+

This work also makes use of cases where Doppler cooling is performed with the roles of
the 397 nm and 866 nm lasers reversed, with the 866 nm photons providing cooling and the
397 nm laser repumping population into the D3/2 ↔ P1/2 cooling transition. This scheme
allows for cooling of the ion motion normal to the trap surface while avoiding directing
dangerous low-wavelength 397 nm light directly onto the trap surface by directing 866 nm
light onto the surface instead, with the 397 nm light parallel to it. However, it presents two
main additional challenges:

1. The cooling power is reduced by about a factor of 30 in comparison to cooling with
397 nm light. Scattering on the D3/2 ↔ P1/2 transition occurs at 1/14 the rate of the
S1/2 ↔ P3/2, and momentum kicks from 866 nm photons are a factor of 2.2 weaker than
those from 397 nm photons. This raises the mimimum achievable Doppler temperature.
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2. The D3/2 ↔ P1/2 has 6 allowed transitions between Zeeman subelevels, in comparison
to 4 in the S1/2 ↔ P3/2. This makes it more challenging to find an optimal detuning
for cooling.

Sideband cooling

Doppler cooling is fundamentally limited by the linewidth of the cooling transition used
(2.46). For cooling on the S1/2 ↔ P1/2 transition with linewidth 23 MHz and at typical trap
frequency of 1 MHz, Doppler cooling leaves the ion motion a thermal state of n̄Doppler = 8
at minimum. Therefore, getting the motion near the ground state (n̄ < 1 or even n̄ � 1)
requires additional cooling by a different technique.

Sideband cooling requires resolved sidebands. If the linewidth of the cooling transition
is smaller than the motional trap frequency, then each motional sideband can be spectrally
resolved. To achieve resolved sidebands in 40Ca+ , the 729 nm S1/2 ↔ D5/2 E2 transition
is used. We tune the 729 nm laser to the first red sideband of the mode we are interested
in cooling, ∆ = −ωj, where ωj labels the frequency of the mode to be cooled, with Rabi
frequency Ωcool. We simultaneously turn on the 854 nm as an auxiliary laser, which drives
D5/2 ↔ P3/2 with Rabi frequency Ωaux, effectively quenching the lifetime of the otherwise
long-lived D5/2 state. One may consider this quenching effect to be effectively amplifying
the linewidth of the 729 nm cooling transition from Γcool to

Γ̃cool =
Ω2

aux

(Γaux + Γcool)2 + 4∆2
aux

Γaux, (2.47)

where ∆aux is the detuning of the 854 nm laser and Γaux is the linewidth of the D5/2 ↔ P3/2

transition. Since the red sideband is being driven, each cooling cycle removes one motional
quantum, which in principle continues until the ground state is reached. Importantly, the
spontaneous decay back into the ground state is one which does not change the motional
quantum number with high probability, as long as the ion begins in the Lamb-Dicke regime.
The probability of such decays which do change the motional quantum number is of order
η2

aux, where ηaux is the Lamb-Dicke factor with respect to the auxiliary transition. The
sideband cooling process is fundamentally limited by two heating effects of the same order:
off-resonant excitation of the carrier followed by decay on the blue sideband transition, and
off-resonant excitation of the blue sideband followed by decay on the carrier transition. The
limiting temperature for sideband cooling is [9]

n̄sideband =
Γ̃2

cool

4ω2
j

(
η2

aux

η2
cool

+
1

4

)
, (2.48)

where ηcool is the Lamb-Dicke factor with respect to the cooling transition. While this gives
the fundamental temperature limit of sideband cooling, there will often be a higher practical
limit due to other unwanted heating processes which compete with the cooling process.

In 40Ca+ , the sideband cooling cycle ideally returns population to the same S1/2 sublevel
in which we began, allowing for continuous cooling while the cooling an auxiliary lasers are on.
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To maximize the probability of this occurring, the 729 nm laser is tuned to drive population
from the S1/2(m = −1/2) state to the stretched D5/2(m = −5/2) state, to guarantee by E1
selection rules that the 854 nm laser then drives population to the stretched P3/2(m = −3/2)
state, from which it must decay back to the S1/2(m = −1/2) state. However, in the event of a
decay of P3/2 to D3/2 or D5/2 instead, repumping by the 866 or 854 nm lasers may change the
magnetic quantum number and allow for subsequent decay into S1/2(m = +1/2). Thus side-
band cooling effectively slowly pumps population from S1/2(m = −1/2) to S1/2(m = +1/2).
This necessitates sideband cooling in stages rather than fully continuously: After about 1
ms, sideband cooling is paused for optical pumping back to S1/2(m = −1/2), after which
sideband cooling is resumed.

2.6.3 Coherent quantum state operations

Generally, the coherent portion of a quantum state experiment is the one of the most scientific
interest, while other processes serve to prepare the ion for coherent manipulation and to
measure the result. In this work, coherent operations are carried out on the S1/2 ↔ D5/2

transition, where in particular any pair of Zeeman sublevels of these energy levels may be
chosen, as long as they obey |∆mj| ≤ 2 so that the transition is electric-quadrupole allowed.
In general, the motion of the ion will be included in the consideration of this process, which is
described by the Hamiltonian (2.30), which upon transformation into the interaction picture
becomes (2.32).

On the carrier transition, appropriate choice of laser pulse durations and phases can pre-
pare an arbitrary superposition of the two electronic states. Labeling the kets corresponding
to the states S1/2 and D5/2 as |S〉 and |D〉, respectively, an arbitrary superposition may
be written as α |S〉 + β |D〉, with arbitrary normalized complex coefficients α and β. On
motional sidebands, one can similarly manipulate the bosonic Hilbert space of the ion’s har-
monic oscillator motion. As a simple example, a π/2-pulse on the blue sideband (∆ = ωx,
duration π/(2ηΩ)) beginning from the ground state results in the state 1√

2
(|S, 0〉 + |D, 1〉),

where the two harmonic oscillator Fock states |0〉 and |1〉 are entangled with the ion’s elec-
tronic state. Using such interactions as building blocks, one can prepare highly non-classical
states of both the ion’s internal and external degrees of freedom. Furthermore, with multiple
ions, one can use similar techniques to entangle the ions together, as in the Mølmer-Sørensen
interaction [27], though this is not done in this work.

2.6.4 State readout

We measure the quantum state of 40Ca+ by applying 397 nm light, which is resonant with the
S1/2 ↔ P1/2 transition but off-resonant with respect to any transition from D5/2, whereupon
ion collapses into S1/2 or D5/2. If the ion collapses to S1/2, then the laser light is scattered
off the resonant S1/2 ↔ P1/2 transition and can be measured as bright by a camera or
photomultiplier tube. If the ion collapses to D5/2, the ion scatters no light and is observed
to be dark.
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A superposition α |S〉 + β |D〉 collapses into |S〉 with probability |α|2 and into |D〉 with
probability |β|2. More generally, the observed probabilities correspond to diagonal elements
of the reduced density matrix in the 2-dimensional electronic Hilbert space. This reduced
density matrix may be mixed due to decoherence, or due to entanglement between the
electronic state and the motional state. Measurement of the electronic state can thus be
used to infer information about the motional state. For example, in an experiment which
excites the first blue motional sideband from the ground state, one can infer addition of a
motional quantum from excitation of the electronic state. This is useful because the motional
degree of freedom is generally not directly measurable; the linewidth of the readout transition
is 23 MHz, while the motional frequency is order 1 MHz, making individual motional energy
levels unresolvable by this measurement.

When multiple ions are used, simultaneous readout of their electronic states using a
photomultiplier tube yields only information about the total number of bright ions. We
typically use this information to compute the average probability of excitation to the |D〉
state, which for N ions is given by

PD =

∑N
n=0 n(1− pn)

N
, (2.49)

where pn is the probability of finding n ions bright.

2.6.5 Quantum state experiments

A full experiment in which we engineer and measure the quantum state of trapped ions
combines the individual processes outlined above. A representative example sequence used
in an experiment in 40Ca+ is as follows:

1. State initialization (1 – 10 µs) We wish to begin with population in the S1/2 ground
state, but some population may be trapped in the long-lived D3/2 or D5/2 states from
the previous experiment cycle. We thus apply the 854 and 866 nm lasers to pump out
of the D states.

2. Doppler cooling (1 – 6 ms) The 397 nm laser is applied, with detuning and power op-
timized to minimize the ion temperature within a given cooling window. Spontaneous
emission may occur from the P1/2 to the D3/2 state, so the 866 nm laser is also applied
to pump out of D3/2 and back into the cooling cycle.

3. Optical pumping (0.5 – 2 ms) Doppler cooling leaves the ion in an incoherent mixture
of the two S1/2 ground states, so optical pumping with the 729 and 854 nm lasers is
used to prepare the population into purely the m = −1/2 subelevel. The 866 nm laser
will also be on to pump out stray population decay into the D3/2 state.

4. Sideband cooling stages, each followed by optical pumping (6×(1 – 2 ms +
0.5 – 1 ms)) Each sideband cooling stage requires the 729 nm laser to be detuned to
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the first red sideband of the mode being cooled. Additional stages can be introduced
with different detunings in order to cool multiple motional modes. The 854 nm laser
is also used, with a power optimized for the quenching process. The 866 nm is present
for repumping.

5. Coherent state manipulation (1 µs – 10 ms) At this stage, the ion motion has been
cooled and its internal state is pure. The 729 nm laser couples the S1/2(m = −1/2)
state to the D5/2(m = −1/2) state on either the carrier or a motional sideband for
some prescribed sequence of pulses, resulting in some superposition of S1/2(m = −1/2)
and D5/2(m = −1/2), which may include motional degrees of freedom if motional
sidebands are addressed.

6. State readout (1 – 10 ms) The 397 nm laser is applied, along with the 866 nm laser
for repumping. The quantum state of each ion collapses into either S1/2 or D5/2 with
probability determined by the state prepared in the previous step. The amplitude of
the 397 nm laser is optimized to maximize the scattering rate to read out as quickly as
possible.

To actually estimate the probabilities of excitation, the experiment is repeated for typically
100 repetitions. We may then change one parameter, such as the time where the 729 nm
laser is on for coherent state manipulation, and repeat. This measures the state probabilities
as a function of this parameter.
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Chapter 3

The trapped-ion planar quantum
rotor

When multiple ions are trapped together in the same Paul-trap potential and are sufficiently
cold, they form a Coulomb crystal, in which their motion finds an equilibrium balanced
between the external potential from the Paul trap and the ions’ mutual repulsion of each
other. In a typical Coulomb crystal, the ions organize themselves into well-defined static
equilibrium positions. Ion motion is restricted to small deviations from these equilibrium
positions, and analysis of this motion involves breaking the motion into normal modes.
Each of these modes involves the motion of multiple ions, but with an appropriate change
of coordinates, each mode can be regarded as a single quantum harmonic oscillator with
a characteristic oscillation frequency. Paul-trapped ion crystal motion thus represents an
experimental manifestation of the quantum harmonic oscillator, a textbook quantum system.
It also enables trapped ions’ usefulness as a quantum computing platform by mediating
entangling operations between ions. As a result, the vibrational motion of trapped ion
crystals is a fundamental part of the field of trapped-ion quantum dynamics.

The work in this thesis explores a type of Paul-trapped ion Coulomb crystal which fun-
damentally differs from this typical picture. Rather than the ions having well-defined static
equilibrium positions, the crystal is instead free to rotate in one plane. This results in one
normal mode which is not a quantum harmonic oscillator, but is instead a quantum rotor.
This chapter details the physics of such a Coulomb crystal rotor and how it interacts with
laser light, and in particular how it differs from the trapped-ion Coulomb crystal harmonic
oscillator. It begins with the well-established physics of static Paul-trapped ion crystals, the
typical system featuring only vibrational modes, before similarly analyzing freely rotating
ion crystals. The results are then summarized in Tab. 3.2.

Most sections in this chapter have the following structure: An analysis of the classical
motion and its normal modes, followed by quantization of the motion, and finally an analysis
of the quantum mechanics of a coherent laser field interacting with this quantized motion,
in particular computing the coupling strength between motional states induced by the laser.
In all cases considered, the laser interacts with the ion motion via motional sidebands of a
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coherent (electric-dipole forbidden) electronic transition between two electronic eigenstates
|a〉 and |b〉, with Rabi frequency Ω. In our experimental work, this is done on the 729 nm
S1/2 ↔ D5/2 transition of 40Ca+ .

3.1 Single ions with a single vibrational mode

This is the simplest case, already analyzed in Sec. 2.4.3. In summary: In the pseudopotential
approximation, the ion motion is a three-dimensional harmonic oscillator with characteristic
oscillation frequencies ωx, ωy, ωz, which can be quantized and described by the Hamiltonian
(2.5). In the presence of a laser field near resonance with an electric dipole-forbidden tran-
sition of the ion’s valence electron, the Hamiltonian (considering only one mode ωx) is given
by (2.30), which in the interaction picture is (2.32). The coupling strengths between energy
eigenstates of the motion (Fock states) in the presence of this laser field are given by (2.34),
which are well-approximated by (2.36) in the Lamb-Dicke regime η2(2n+ 1)� 1.

These results were derived by the following formulation:

1. Write the Hamiltonian in the Schrödinger picture.

2. Rewrite the operator eik·r (which comes from the plane-wave form of the laser field) in
terms of ladder operators for the ion’s motion (which in this case are a, a†).

3. Transform into the interaction picture.

4. Compute the matrix element between an arbitrary pair of motional eigenstates.

This procedure is followed in the following sections to derive corresponding coupling strengths
for the case of multiple ions, and in the case of a freely rotating Coulomb crystal.

3.2 N-ion crystals with 3N vibrational modes

This section generalizes the previous section in two ways: by considering an arbitrary number
of ions trapped together, and by accounting for all 3N of their motional degrees of freedom.
For Coulomb crystals composed of many trapped ions, the results of the previous section
extend to a set of 3N harmonic oscillators in total, each with its own characteristic vibrational
frequency and Lamb-Dicke factor. The primary difference is these oscillators describe the
motion of normal modes of the crystal, which can involve the motion of multiple ions, due
to their mutual Coulomb interaction.

3.2.1 Normal modes of motion

An ion Coulomb crystal is formed when N trapped ions find their equilibrium positions which
minimize the potential energy of the entire system. Contributions to this potential energy
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are the external potential created by the Paul trap and the ions’ mutual Coulomb repulsion.
The external potential is characterized by the three center-of-mass secular frequencies ωx,
ωy, ωz. The N ions have 3N motional degrees of freedom in total, which couple to each other
through the Coulomb interaction. If the crystal is sufficiently cold, the motion of the ions
about their respective equilibrium positions will be small enough that the potential energy
of the crystal can be adequately described using a Taylor expansion about the equilibrium
position (x0

i , y
0
i , z

0
i ) of each ion i. This expansion describes harmonic motion if taken only to

second order. Diagonalizing this potential energy function in the motional coordinates leads
to 3N normal modes [28]. Each mode j has a characteristic frequency ωj and coordinate ξj,
which is a linear combination of the ions’ real-space coordinates δxi, δyi, δzi describing their
deviation from their equilibrium positions. The normal mode coordinates can be related to
the real-space coordinates by the N × 3N matrices

δxi =
3N∑
j=1

Xijξj, δyi =
3N∑
j=1

Yijξj, δzi =
3N∑
j=1

Zijξj. (3.1)

Quantizing the motion of the normal modes yields corresponding creation and annihilation
operators a†j, aj, related to the coordinate by

ξj =

√
~

2mωj
(aj + a†j). (3.2)

This thesis defines ωx < ωy < ωz, contrary to some conventions where ωz is taken to
be the smallest trap frequency. This is because for the ring trap it is convenient to define
the symmetry axis as the z-direction, but the confinement along this axis is the strongest.
Hence here ωz is defined to always be the axis of highest trap frequency, so that the usual
anisotropic case ωx < ωy < ωz smoothly connects with the relevant planar isotropic case
ωx = ωy < ωz as ωy → ωx.

As a simple example, consider a two-ion Coulomb crystal. The equilibrium positions can
be solved for analytically in this case:

r0
1 =

([
e2

16πε0mω2
x

]1/3

, 0, 0

)

r0
2 =

(
−
[

e2

16πε0mω2
x

]1/3

, 0, 0

)
.

(3.3)

There are 6 total normal modes: three center-of-mass (COM) modes with both ions oscil-
lating in phase at the same frequency of the corresponding single ion mode, a “stretch”
mode in which the ions oscillate out of phase towards and away from each other, and two
“rocking” modes in which the ions oscillate out of phase normal to the ion-ion axis. The
eigenfrequencies and eigenvectors of these modes are tabulated in Tab. 3.1, and shown in
Fig. 3.1.
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Mode COM x COM y COM z Stretch Rocking y Rocking z

Frequency ωx ωy ωz
√

3ωx
√
ω2
y − ω2

x

√
ω2
z − ω2

x

Xj
1√
2
( 1

1 ) ( 0
0 ) ( 0

0 ) 1√
2
( 1
−1 ) ( 0

0 ) ( 0
0 )

Yj ( 0
0 ) 1√

2
( 1

1 ) ( 0
0 ) ( 0

0 ) 1√
2
( 1
−1 ) ( 0

0 )

Zj ( 0
0 ) ( 0

0 ) 1√
2
( 1

1 ) ( 0
0 ) ( 0

0 ) 1√
2
( 1
−1 )

Table 3.1: Mode frequencies and structure of all normal modes of a 2-ion Coulomb crystal in
an anisotropic potential. Here the mode matrices X, Y , Z are shown in terms of the column
that corresponds to each mode, with each element of the column corresponding to each ion.
The full 2 × 6 matrices are constructed by concatenating the columns for each mode along
each row of the table.

x

ωx ωy ωz

y
z

x

y
z

x

y
z
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z

x

y
z
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y
z

3ωx ωy
2 – ωx

2 ωz
2 – ωx

2 

Figure 3.1: Normal modes of a 2-ion Coulomb crystal oriented along the x-direction. Each
is shown with its corresponding eigenfrequency.

3.2.2 Interaction with a coherent laser field

To analyze the physics of a coherent laser field interacting with a trapped-ion Coulomb
crystal with many motional modes, we can first generalize the Hamiltonian (2.30) to include
multiple ions and many modes:

H = H0 +H1,

H0 =
3N∑
j=1

~ωj(a†jaj + 1
2
) +

N∑
i=1

1

2
~ωab (|bi〉〈bi| − |ai〉〈ai|)

H1 =
N∑
i=1

1

2
~Ωi (|bi〉〈ai|+ |bi〉〈ai|)

[
ei(k·ri−ωt) + e−i(k·ri−ωt)

]
.

(3.4)
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The electronic-transition Rabi frequency Ωi is given by the laser field’s matrix element be-
tween the electronic states |a〉 and |b〉, e.g. (2.19). Hereafter we will not be concerned with
computing the Rabi frequency, but instead take as a given that it takes on some value pro-
portional to the laser field amplitude. In practice, we directly measure the Rabi frequency
by observing Rabi oscillations. In general, the Rabi frequency of each ion i may differ if the
laser intensity at the ions’ positions differs.

Rewriting the operator k · ri in terms of normal modes using (3.1) and (3.2),

k · ri = k · (r0
i + δri)

= k · r0
i + kx

∑
j

Xijξj + ky
∑
j

Yijξj + kz
∑
j

Zijξj

= k · r0
i +

∑
j

(kxXij + kyYij + kzZij)

√
~

2mωj
(aj + a†j)

= k · r0
i +

∑
j

ηij(aj + a†j),

(3.5)

where the Lamb-Dicke factor for the ith ion and jth mode is defined as

ηij ≡ (kxXij + kyYij + kzZij)

√
~

2mωj
. (3.6)

In terms of the normal modes, the interaction-picture Hamiltonian in the RWA becomes

HI =
1

2
~
∑
i

Ωi |bi〉〈ai|
∏
j

eiηij [ãj(t)+ã
†
j(t)]e−i∆t + h.c. (3.7)

The term k · r0
i containing the equilibrium positions becomes a constant phase factor eik·r

0
i

which may be neglected, e.g. by being absorbed into the definition of Ωi. The coupling
strength for the ith ion for an arbitrary transition between motional eigenstates is

〈bi,n + ∆n|HI |ai,n〉 =
1

2
~ Ωi n,n+∆n e

−iδ∆nt, (3.8a)

where

Ωi n,n+∆n ≡ Ωi

∏
j

〈nj + ∆nj|eηij(aj+a
†
j)|nj〉 (3.8b)

δ∆n ≡ ∆−
∑
j

∆njωj (3.8c)

This may be compared to the case of a single ion with a single mode:
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• δ∆n is equal to the detuning of the laser frequency from the transition frequency of
|a,n〉 ↔ |b,n + ∆n〉. The resonance condition δ∆n = 0 may be understood as conser-
vation of energy for the given transition. In this case, each mode independently may
change its energy by an integer number of its respective quantum ~ωj.

• The amplitude Ωi n,n+∆n is the coupling strength for the transition, and will be equal to
the Rabi frequency of transitions between |a,n〉 and |b,n + ∆n〉. This total coupling
strength can be understood as the product of all coupling strengths of each mode
individually. Thus the coupling to each mode is independent of coupling to the other
modes. Each may be evaluated independently from (2.34), or (2.36) if the Lamb-Dicke
approximation holds.

3.3 2-ion crystals in a planar rigid rotor

The previous sections assumed that the Paul trap potential was anisotropic, so that the three
characteristic secular frequencies of the Paul trap potential ωx, ωy, ωz were distinct. Here,
we now consider the case of planar isotropy, ωx = ωy < ωz, in which we will find that the
motion of ion crystals can differ quite drastically from the typical case considered previously.
In particular, they exhibit rotational motion, rather than only vibrational. The smallest
Coulomb crystal to exhibit this behavior consists of 2 ions, so we begin by considering this
case. While the results of the previous sections of this chapter are well-established, the
trapped-ion rotor is a novel system and thus the results of this section are also novel.

In the previous section, it was possible to move directly from the expression for the
potential energy of the Coulomb crystal to the description of the normal modes. Deriving
the normal modes for a Coulomb crystal which is allowed to rotate requires some more
care, so this section will go through the derivation. Note in particular that, for the 2-ion
anisotropic case, the eigenmodes and their frequencies are given in Tab. 3.1. For the present
case of ωx = ωy, we will find that 5 of these 6 modes remain unchanged (the COM modes,
stretch, and rocking z modes), while the rocking y mode is modified, as the vibrational
description is no longer valid. Indeed, we can see that if it were, its frequency

√
ω2
y − ω2

x

would go to zero as ωy approached ωx. This mode instead becomes the rotational mode of
the trapped-ion rotor.

3.3.1 Derivation of the modes of motion

The full Hamiltonian of the crystal’s motion in terms of the real-space positions and momenta
of the two ions r1,2,p1,2 is

H =
p2

1

2m
+

p2
2

2m
+

1

2
mω2

x(x
2
1 + y2

1 + x2
2 + y2

2) +
1

2
mω2

z(z
2
1 + z2

2) +
e2

4πε0|r1 − r2|
, (3.9)

where p1,2 = |p1,2|. This system has 6 degrees of freedom in total. As usual in a two-
body problem, it is convenient do define new coordinates, the center-of-mass position and
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momentum R,P and the relative position and momentum r,p, defined by

R =
r1 + r2

2
, P = p1 + p2

r = r1 − r2, p =
p1 − p2

2
.

(3.10)

Substituting this into (3.9), we find that the Hamiltonian is written as a sum two terms, one
containing only center-of-mass coordinates, and one containing only relative coordinates.
The center-of-mass Hamiltonian is a 3-dimensional harmonic oscillator with two isotropic
directions at frequency ωx and one at ωz; precisely the same as for a single ion in the same
potential. The center-of-mass motion therefore exhibits the usual three vibrational normal
modes.

For the three degrees of freedom for the “relative” motion, we move to cylindrical coor-
dinates, ρ, θ, z, defined by ρ cos θ = x, ρ sin θ = y. The potential energy term of the relative
motion in cylindrical coordinates is

U(r) =
1

2
µ(ω2

xρ
2 + ω2

zz
2) +

e2

4πε0

1√
ρ2 + z2

, (3.11)

where µ = m/2 is the reduced mass. Here the rigid rotor assumption is introduced, to be
clarified and justified later in this section: The centrifugal potential has negligible effect on
this potential. We will find that this condition is equivalent to the condition that the rotation
frequency ωrot of the ion crystal must be small compared to the in-plane secular frequency
ωx. Under this assumption, we may proceed by finding the minimum of this potential and
expand about it, without considering rotational effects. The minimum is at z = 0 and ρ = ρe,
where

ρe =

(
e2

4πε0µω2
x

)1/3

. (3.12)

Expanding the potential about ρ = ρe, z = 0, the lowest-order remaining terms are

U(r) ≈ 3

2
µω2

x(ρ− ρe)2 +
1

2
µ(ω2

z − ω2
x)z

2. (3.13)

Here we’ve found two more normal modes, the stretch mode in which ρ oscillates about ρe at
frequency

√
3ωx, and the rocking z mode in which z oscillates about at frequency

√
ω2
z − ω2

x,
precisely the same as the anisotropic case as in Tab. 3.1. To find the description of the
remaining degree of freedom, the angular coordinate θ which will describe the rotational
motion, it is most useful to turn to the Schrödinger equation. It will be necessary to include
the radial coordinate ρ in this description.

We seek the eigenfunctions and energies from the time-independent Schrödinger equation.
As is the typical technique, we assume that the eigenfunctions for the two coordinates ρ, θ
factor and write them as ψ(ρ, θ) = R(ρ)Y (θ). The time-independent Schrödinger equation
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in cylindrical coordinates then reads

Hψ = Eψ

− ~2

2µ

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂θ2

)
R(ρ)Y (θ) +

3

2
µω2

x(ρ− ρe)2R(ρ)Y (θ) = ER(ρ)Y (θ),
(3.14)

With some massaging, this becomes[
ρ2

R

d2R

dρ2
+
ρ

R

dR

dρ
− 2µr2

~2

(
3

2
µω2

x(ρ− ρe)2 − E
)
R

]
︸ ︷︷ ︸

`2

+

[
1

Y

d2Y

dθ2

]
︸ ︷︷ ︸
−`2

= 0. (3.15)

With the coordinates separated, each of the two bracketed terms must be equal to a constant,
which we call ±`2 in anticipation of ` becoming the angular momentum quantum number.
Indeed, the angular eigenfunctions are

Y`(θ) =
1√
2π
ei`θ. (3.16)

Continuity of Y` requires ` to be an integer. For the remaining radial part of the Schrödinger
equation, we define u(ρ) =

√
ρR(ρ); the radial Schrödinger equation can then be written

(with some further massaging) as

− ~2

2µ

d2u

dρ2
+

[
3

2
µω2

x(ρ− ρe)2 +
~2

2µ

`2 − 1
4

ρ2

]
u = Eu. (3.17)

We now have a typical 1-dimensional Schrödinger equation in the coordinate ρ, with a
potential consisting of two terms: One is the stretch mode’s harmonic potential, and the
other is a centrifugal term. As previously stated, the rigid-rotor approximation neglects the
modification of the centrifugal term to the harmonic one. One way to quantify this is to
compute the fractional change in the equilibrium radial coordinate due to the centrifugal
term, δρe. The centrifugal effect can then be neglected if δρe/ρe � 1. In terms of the
parameters of (3.17), this condition turns out to be

δρe(`)

ρe
=

~2`2

3µ2ρ4
eω

2
x

� 1. (3.18)

With typical experimental parameters, this ratio is of the order 10−3 − 10−2, quantifying
the degree to which the rigid rotor approximation is justified. This approximation will be
taken throughout the majority of this work, but Sec. 3.5 will also look more quantitatively
at the implications of non-rigid effects, where also the above rigidity condition (3.18) will be
shown.

In the rigid rotor approximation, we can thus set ρ = ρe in the centrifugal term. We
can also ignore the −1/4 term, which is justified since (1) in practice, we consider states
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Figure 3.2: Normal modes of a 2-ion crystal which may rotate. The differences between
this case and Fig. 3.1 are that here, the x and y COM frequencies are the same, and the
horizontal rocking mode is replaced by the rotational mode.

where ` � 1 (but not so large that the rigid rotor approximation is broken), and (2) if the
rigid rotor approximation is already taken, the −1/4 term represents a constant energy offset
anyway. Then the Schrödinger equation is

− ~2

2µ

d2u

dρ2
+

[
3

2
µω2

x(ρ− ρe)2 +
~2`2

2µρ2
e

]
u = Eu. (3.19)

This fully separates the stretch mode (in coordinate ρ) from the rotor mode (in coordinate
θ). We can now consider the rotor mode as independent from all 5 other degrees of freedom.

3.3.2 Quantum mechanics of the planar rigid rotor mode

As found from the Schrödinger equation, the rigid rotor mode has eigenfunctions Y`(θ) ∝ ei`θ

and energy E` = ~2`2/2µρ2
e, where ` is quantized to integer values. It is convenient to rewrite

this now in terms of laboratory-frame parameters rather than 2-body problem parameters,
m = 2µ, r = ρe/2, where r is the radius of the 2-ion rotor. (We can now drop the subscript
e for equilibrium from the radius for the rest of this section, since the rotor is rigid by
assumption, such that it is understood that for the rigid rotor, r is a constant and not a
coordinate.)

E` =
~2`2

4mr2
= ~ωr`2, (3.20)

where ωr ≡ ~/4mr2 is the rotational constant, defining the energy scale of the rotor’s energy
states. In the context of molecules, this constant is sometimes called B [29]. With typical
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experimental parameters in this work, the rotational constant is of the order 2π×10 Hz. We
can also rewrite the rotor radius (3.11) in terms of laboratory-frame parameters:

r =

(
e2

16πε0mω2
x

)1/3

. (3.21)

Note that this radius matches the ion equilibrium positions in the case of a 2-ion crystal in a
typical anisotropic potential, (3.3). With typical experimental parameters, this is a few µm.

It is worth noting that we could also derive the eigenfunctions and energies of this rigid
rotor mode directly from assuming it to be a quantum planar rotor. Such a system has
only one degree of freedom, the angular position θ, whose conjugate momentum is the z-
component of angular momentum Lz. The potential is constant in θ, so the Hamiltonian
consists of only a kinetic energy term, H = L2

z/2I, where I is the moment of inertia. For the
2-ion crystal, I = 2mr2, but in general, all parameters of the planar quantum rotor can be
written in terms of I =

∑
imir

2
i , providing a more general formulation which is agnostic to

the rotor’s constituent particles and will become useful in the following section. In particular,
the rotational constant is given in general by

ωr =
~
2I
. (3.22)

The Hamiltonian L2
z/2I manifestly commutes with the angular momentum Lz, which is

found to be quantized in integer multiples of ~, so that the simultaneous eigenfunctions of
angular momentum and the Hamiltonian, |`〉, satisfy Lz |`〉 = ~` |`〉 and H |`〉 = ~2`2/2I |`〉 =
~ωr`2 |`〉. This is the same result as (3.20).

Furthermore, from the classical relation between angular momentum and angular velocity
L = Iωrot, we can identify angular momentum eigenstates |`〉 with classical angular velocities
by ~` = Iωrot , so that

ωrot =
~`
I

= 2`ωr (3.23)

This provides an alternative interpretation of the rotational constant ωr: The quantum of
angular momentum, ~, has a corresponding quantum of angular velocity of 2ωr, equal to
twice the rotational constant.

As with harmonic oscillator modes, we are interested in how the motion of the rigid rotor
mode affects a coherent electronic transition of the ions; in particular, at what frequencies
motional sidebands appear, and what their coupling strengths are.

3.3.3 Coupling strengths of interaction with a coherent laser field

Here we will consider the interaction of a coherent laser field with a 2-ion crystal that exhibits
only planar rotational motion; consider the case of including other modes is considered in
Sec. 3.4.
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Figure 3.3: Two ions in a planar rotor illuminated by a laser field with wavevector k. The
coordinate θ defines the angle of rotation of the full crystal relative to a reference orientation
where the ion positions are (x0

i , y
0
i ).

The appropriate Hamiltonian, including the 2 electronic states of interest of the 2 ions
and the rotational motion, interacting with a laser field at frequency ω with wavevector k
as usual, is

H = H0 +H1,

H0 =
L2
z

2I
+

2∑
i=1

1

2
~ωab (|bi〉〈bi| − |ai〉〈ai|)

H1 =
2∑
i=1

1

2
~Ω (|bi〉〈ai|+ |bi〉〈ai|)

[
ei(k·ri−ωt) + e−i(k·ri−ωt)

]
.

(3.24)

In this case, the ions are no longer localized to well-defined positions, so assigning a Rabi
frequency Ωi to each due to its position in the laser field is no longer meaningful. For
simplicity, it is assumed that the light field uniformly illuminates the crystal, with electronic
Rabi frequency Ω.

The position operator

We can first transform the operator k · ri to be in terms of angular momentum raising and
lowering operators L±, analogous to rewriting k · r as η(a + a†) in vibrational modes. This
can be done by recognizing the angular momentum raising and lowering operators in position
space as e±iθ, since L± |`〉 = e±iθ 1√

2π
ei`θ = 1√

2π
ei(`±1)θ = |`± 1〉. The position of ion 1 is
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(x1, y1, z1) = (r cos θ, r sin θ, 0), so

k · r1 = kxr cos θ + kyr sin θ

= kxr
eiθ + e−iθ

2
+ kyr

eiθ − e−iθ
2i

=
1

2
(kx − iky)rL+ +

1

2
(kx + iky)rL−

=
1

2
ζ1L+ +

1

2
ζ∗1L− ,

(3.25a)

where
ζ1 ≡ (kx − iky)r. (3.25b)

ζ1 (whose subscript specifies the ion number) is a dimensionless, complex parameter, effec-
tively quantifying the ratio between the rotor radius and the laser wavelength. This is gen-
erally much larger than a typical Lamb-Dicke parameter η for a vibrational mode, since the
relevant length scale is an ion-ion distance, rather than the size of a single ion’s wavepacket.
As an example, consider 40Ca+ in a trap with secular frequency in the x-direction of 1 MHz
interacting with 729 nm light directed along the x-direction. A single ion’s vibrational mode
will have a Lamb-Dicke factor of η = 0.097, while a pair of ions in a planar isotropic trap
of the same secular frequency will have a rotor radius r = 2.8 µm which gives ζ = 24. The
position of ion 2 is r2 = −r1 since we have a rigid rotor centered at the origin, so evaluating
k · r2 gives 1

2
ζ2L+ + 1

2
ζ∗2L− where ζ2 = −ζ1. More generally,

k · ri =
1

2
(ζiL+ + ζ∗i L−), where (3.26a)

ζi ≡ (kx − iky)(x0
i + iy0

i ). (3.26b)

(x0
i , y

0
i ) is the equilibrium position of ion i in the rotor plane at θ = 0. The overall phase

of all ζi is arbitrary, depending on the choice of the directions of the x and y axes, but the
relative phases between ζi for different ions encode information about the angles between
the different ions’ equilibrium positions.

The interaction picture Hamiltonian

We can now transform as usual into the interaction picture given by HI = U †H1U , U =
e−iH0t/~.

HI =
1

2
~

2∑
i=1

Ω |bi〉〈ai| ei
1
2

[ζiL̃+(t)+ζ∗i L̃−(t)]e−i∆t + h.c. (3.27)

where
L̃+(t) =

∑
`

ei(2`+1)ωrt |`+ 1〉〈`| (3.28)
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is the interaction-picture angular momentum raising operator. From here we can compute
matrix elements between energy eigenstates, analogous to (2.33):

〈bi, `′|HI |ai, `〉 =
1

2
~Ω e−i∆t 〈`′|ei

1
2

[ζiL̃+(t)+ζ∗i L̃−(t)]|`〉

=
1

2
~Ω e−i[∆−(`′2−`2)ωr]t 〈`′|ei

1
2

(ζiL++ζ∗i L−)|`〉
(3.29)

Here, we find that resonance occurs when ∆ = (`′2 − `2)ωr, or when the detuning from the
carrier electronic transition is equal to the transition frequency between the states |`〉 and
|`′〉, (E`′ − E`)/~ = (`′2 − `2)ωr.

Rotational transition coupling strengths

The coupling strengths of rotational sidebands are calculated by evaluating the remaining
matrix element. To do this, it is useful to rewrite `′ as ` + ∆`. The matrix element can be
computed by writing everything in position space and evaluating the appropriate integral:

〈`+ ∆`|ei
1
2

[ζL++ζ∗L−]|`〉 =

∫ 2π

0

dθ
1√
2π
e−i(`+∆`)θei

1
2

(ζeiθ+ζ∗e−iθ) 1√
2π
ei`θ

=
1

2π

∫ 2π

0

ei
1
2

(ζeiθ+ζ∗e−iθ)−i∆`θ

= ei∆`[arg(ζ)+π/2] J∆`(|ζ|).

(3.30)

The magnitude of this matrix element is the ∆`th order Bessel function of the first kind
evaluated at |ζ|. Note that this expression holds even for transitions which lower the angular
momentum quantum number, using the Bessel function identity J−n(x) = (−1)nJn(x). In
total then, we have

〈bi, `+ ∆`|HI |ai, `〉 =
1

2
~ Ω∆` e

−iδ`,`+∆`t, (3.31a)

where

Ω∆` ≡ Ω J∆`(|ζi|) ei∆`[arg(ζi)+π/2] (3.31b)

δ`,`+∆` ≡ ∆− (2`∆`+ ∆`2)ωr. (3.31c)

This result for rotor-mode laser-ion coupling can be compared to that of vibrational-mode
laser-ion coupling (3.8). A few points in particular are worth making:

• Resonance occurs at a detuning of ∆ = (2`∆` + ∆`2)ωr, which is the transition fre-
quency between the states |`〉 and |`+ ∆`〉. Unlike the harmonic oscillator, because
the rotor is nonlinear, this transition frequency depends on the starting state |`〉, not
just on the number of quanta being added or subtracted.
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Figure 3.4: (a) Schematic sideband spectra for rigid rotor sideband transitions. The height
of the peaks shown is the square of the magnitude of the relative coupling strength J∆`(|ζ|).
Typical values of |ζ| are greater than 1, so unlike a vibrational mode in the Lamb-Dicke-
regime, the rotational coupling strengths do not fall monotonically with sideband order. (b)
Semi-classical picture of the rotor absorbing a photon carrying linear mometum ~k at a
perpendicular distance a away from the axis of rotation, thus imparting angular momentum
L = ~ka.

• If `� ∆`, then the sideband frequency is approximately 2`∆`ωr = ∆` ωrot, which is ∆`
times the classical rotation frequency that corresponds to the angular momentum `~.
Thus, in this limit, motional sidebands are found at integer multiples of the classical
rotation frequency. This agrees with a classical expectation of finding modulation
sidebands at the frequency of the motion.

• The magnitude of the coupling strength, J∆`(|ζi|), is independent of the starting state
|`〉, and depends only on the order of the sideband transition, unlike the harmonic
oscillator.

In summary, rotational sidebands occur at frequencies which are (approximately) integer
multiples of the rotation frequency, with coupling strengths that are independent of the state
|`〉 and depend only on ∆`. In particular, their magnitude is given by J∆`(|ζ|), where |ζ| is
a dimensionless parameter equal to the product of the rotor radius and the laser wavevector
projected onto the rotor plane.

We can compare this result to a semi-classical interpretation, shown schematically in
Fig. 3.4(b): A single photon, approximated as a hard point-sized sphere carrying linear
momentum ~k (when projected onto the rotor plane), collides with the rotor at some position
a distance a away from the center. This adds an angular momentum of ~ka to the rotor.
If the laser is fully illuminating the rotor, then a photon may collide with the rotor at any
distance a where −r < a < r, with some probability. Thus the maximum possible angular
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momentum transfer is ~kr = ~ζ, so if the angular momentum is quantized, then ∆` is
bound between −ζ and ζ. The true coupling strength J∆`(|ζ|) indeed falls off rapidly with
increasing ∆` beyond the point where |∆`| > |ζ|, as can be seen from Fig. 3.4(a).

3.3.4 Rabi oscillations of rotational sideband transitions

The transition frequencies and coupling strengths of transitions which change the rotational
state of a trapped-ion rotor derived above inform the shape of measured Rabi oscillations.
As with vibrational sidebands, if the initial state is not an energy eigenstate, then the
observed result will be a weighted average over the initial state (Eq. (2.38)). In contrast to
vibrational sideband transitions, which exhibit different Rabi frequencies for different n due
to their different coupling strengths, rotational sideband transitions have the same coupling
strength for different ` but have different detunings. A typical initial state for the rotor in
this work is one where the initial state is close to Gaussian-distributed in angular momentum
space, with a mean ¯̀ large compared to its standard deviation, σ`. As described in more
detail in Chapter 6, this allows us to spectrally resolve sidebands by their transition order
∆`. For an initial state of the rotor given by some probability P`, Rabi oscillations on the
∆` sideband take the form

Pb(t) =
∑
`

P`
Ω2

∆`

Ω2
∆` + δ2

`,`+∆`

sin2

(
1

2

√
Ω2

∆` + δ2
`,`+∆` t

)
. (3.32)

Here dephasing of the oscillations comes from the contributions of different detunings.
Figure 3.5 shows some Rabi oscillations for an angular momentum distribution which is
Gaussian-distributed with standard deviation σ`. Note that the relation (3.32) strictly holds
for only a single ion in a rotor; for a rotor with two ions, both may be excited, and the result
is slightly modified, though negligibly so in most cases of experimental interest. Sec 6.4
quantifies this discrepancy.

3.4 N-ion crystals in a planar rigid rotor with

vibrational motion

This section generalizes the results of the previous section to a Coulomb crystal which may
exhibit vibrational motion in addition to the rotational motion. This is straightforwardly
furthermore generalized to a crystal which contains an arbitrary number of constituent ions.
This section makes both of these generalizations together.

Here, the rotational motion fundamentally alters the way that a laser field interacts with
vibrational modes, in contrast to a static Coulomb crystal whose vibrational modes may be
considered independent of each other. We assume here that the rotor is still rigid in the sense
that the ions’ equilibrium positions do not change with the rotational state from centrifugal
effects, though they may vibrate about those equilibrium positions. We further assume that
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Figure 3.5: Simulated Rabi oscillations on rotational sidebands for different angular momen-
tum distribution widths σ` for ∆` = 1, 4. Different values of ∆` result in different detunings
δ`,`+∆`. In both cases, the coupling strength Ω∆` is set to 2π×10 kHz.

the Coulomb crystal is at most 2-dimensional so that ions’ equilibrium positions all lie within
the xy-plane.

3.4.1 The position operator

When considering the vibrational normal modes of the N -ion crystal in addition to the rigid
rotor mode, the Hamiltonian (3.24) generalizes to

H = H0 +H1,

H0 =
L2
z

2I
+
∑
j

~ωj(a†jaj + 1
2
) +

∑
i

1

2
~ωab (|bi〉〈bi| − |ai〉〈ai|)

H1 =
∑
i

1

2
~Ω (|bi〉〈ai|+ |bi〉〈ai|)

[
ei(k·ri−ωt) + e−i(k·ri−ωt)

]
,

(3.33)

where the index i runs over the N ions and the index j runs over the 3N − 1 vibrational
modes. As usual, we will rewrite the ion positions ri in terms of normal mode coordinates,
but here, unlike the case of an anisotropic potential, the ions do not have unique equilibrium
positions. Instead, they are unique only up to the overall orientation of the crystal, θ. We
define a reference “equilibrium” position r0

i as the equilibrium position of ion i at θ = 0.
To illustrate this concretely, consider the ion positions of a 2-ion crystal at orientation

θ = 0, plus some finite excitation of the stretch mode only. The equilibrium positions match
the anisotropic case given in (3.3), and similarly the eigenvector of the stretch mode matches
Tab. 3.1, so that for a stretch mode coordinate ξstretch,

rθ=0
1 = (r + 1√

2
ξstretch, 0, 0)

rθ=0
2 = (−r − 1√

2
ξstretch, 0, 0).

(3.34)
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Figure 3.6: Four ions in a planar rotor illuminated by a laser field with wavevector k. The
ions may rotate about the origin, described by the angle coordinate θ, and may also vibrate.
In total there are 2N − 1 = 7 vibrational modes within the xy-plane. One of them, the
breathing motion, is shown, with coordinate ξj. Grey dotted circles show the ions’ reference
positions when all coordinates are zero, and black dotted circles show the ions’ positions
when only the angular coordinate θ is nonzero.

If on the other hand θ 6= 0, the entire crystal is reoriented, which can be quantified by
applying a rotation matrix:

ri =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 rθ=0
i (3.35)

The effect is to rotate not only the “equilibrium” positions of the ions, but to also reorient
the vibrational normal modes. In the example of the 2-ion crystal where we consider the
contribution of the stretch mode only, finite θ results in new positions

r1 =
(

cos θ [r + 1√
2
ξstretch], sin θ [r + 1√

2
ξstretch], 0

)
r2 =

(
cos θ [−r − 1√

2
ξstretch], sin θ [−r − 1√

2
ξstretch], 0

)
.

(3.36)

Since the direction of the vibrational normal modes depends on the orientation θ, it is
convenient to define the normal mode matrices (Xij, Yij, Zij describing the contribution of
mode j to ion i) at the reference orientation θ = 0. Generalizing to all modes, the position
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of ion i in terms of normal mode coordinates is given by

ri =

(
cos θ

[
x0
i +

∑
j

Xijξj

]
− sin θ

[
y0
i +

∑
j

Yijξj

]
,

sin θ

[
x0
i +

∑
j

Xijξj

]
+ cos θ

[
y0
i +

∑
j

Yijξj

]
,

∑
j

Zijξj

)
.

(3.37)

Since the rotation is confined to the xy-plane, the orientation has no effect on the equi-
librium position or normal modes in the z-direction. All normal modes of a 2D ion crystal
will either be entirely in the plane (Zij = 0) or entirely out of the plane (Xij = Yij = 0),
categories which we label “horizontal” and “vertical” modes. For an anisotropic (planar
isotropic) N -ion crystal, there are exactly 2N (2N − 1) horizontal vibrational modes, and N
vertical vibrational modes. This distinction is useful in the case of the rotor, since the rotor
mode affects the horizontal modes, but not the vertical modes.

We can now rewrite (3.37) with the mode coordinates θ, {ξj} written in terms of operators.
The result, when dot-multiplied with the laser wavevector k, is

k ·ri =
1

2
(ζiL+ + ζ∗i L−) +

∑
j ∈ horiz.

modes

1

2

(
η̃ijL+ + η̃∗ijL−

)
(aj +a†j) +

∑
j ∈ vert.

modes

ηij(aj +a†j), (3.38)

where

η̃ij ≡ (kx − iky)(Xij + iYij)

√
~

2mωj
, (3.39)

and ζi and ηij are already defined by (3.26b) and (3.6), respectively. η̃ij can be interpreted
as a sort of modified Lamb-Dicke factor. (Note that here, the tilde in η̃ indicates a complex
number, not an interaction-picture operator.) It is useful to compare this result to the
corresponding results for crystals when only vibrational motion is present (3.5), and for
planar-isotropic crystals whose rotational motion is considered alone (3.26). To summarize
some noteworthy points about this comparison:

• k · ri is a sum of three terms: one corresponding to the rotational motion, one to the
vibrational motion in the plane of rotation, and one to the vibrational motion out of the
plane of rotation. The first is precisely the same as (3.26) (rotational motion only), and
the last is precisely the same as (3.5) (vibrational motion only) up to a constant term.
The remaining term is a modified version of (3.5), where the real-valued Lamb-Dicke
factor ηij is instead replaced by a Hermitian operator 1

2
(η̃ijL+ + η̃∗ijL−), an operator in

the rotational Hilbert space. Therefore, unlike the case of a typical Coulomb crystal
which exhibits only vibrational motion, the motional modes of motion of a planar
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isotropic crystal do not fully separate for the purposes of laser interaction with those
modes, even in the rigid rotor approximation; rather, the rotational degree of freedom
fundamentally modifies the coupling of the horizontal vibrational modes to the laser.

• In a purely vibrational crystal, k · ri is given by (3.5), which contains a constant term
k · r0

i for the equilibrium position of ion i. When exponentiated, this constant term
becomes a phase factor which may be ignored. In the rotational case, on the other hand,
it is precisely this term which instead turns into the rotational term 1

2
(ζiL+ + ζ∗i L−)

in (3.38).

• The complex dimensionless factor η̃ij is a modified version of the real Lamb-Dicke
factor ηij. Comparing to (3.6), we find that the real part of η̃ij is precisely ηij, and
the imaginary part is what the Lamb-Dicke factor would be if the if the mode were
rotated by 90 degrees (up to a sign). We can think of the rotational degree of freedom
as eliminating any concept of a well-defined angle between the laser wavevector and
the direction of mode j.

• Under the rigid rotor assumption, rotational operators L± and vibrational operators
aj, a

†
j commute; this assumption was made in deriving the result.

3.4.2 The interaction-picture Hamiltonian

With (3.38) as an expression for k · ri in terms of operators, we can transform (3.33) into
the interaction picture. For simplicity, we can ignore the vertical modes for this step; their
contribution to the laser coupling is unchanged from what they would be in case of an
anisotropic case, which has already been analyzed.

HI =
1

2
~
∑
i

Ω |bi〉〈ai|
∏
j

ei
1
2

[ζiL̃+(t)+ζ∗i L̃−(t)] ei
1
2 [η̃ijL̃+(t)+η̃∗ijL̃−(t)][ãj(t)+ã†j(t)] e−i∆t+h.c. (3.40)

Here the index j runs over horizontal modes only. To find the coupling strength for a transi-
tion between eigenstates for ion i, we seek matrix elements of the form
〈bi, `+ ∆`,n + ∆n|HI |ai, `,n〉, where now n stands for the state of all 2N − 1 horizontal
vibrational modes. Note that, unlike (3.7) for N -ion crystals with only vibrational motion,
(3.40) is not simply a product of terms for each mode, so we cannot simply compute the ma-
trix element of the full Hamiltonian as a product of matrix elements for each mode. Instead,
the the rotational and vibrational motion each affect the nature of the other’s interaction
with the laser field. As a result, a simple closed-form expression for the matrix elements
of HI is not in general possible for rovibrational transitions. However, we can write the
expression for the matrix elements in a form which is easier to interpret, after which we may
gain some insight by looking at some special cases. Taking the matrix element, inserting a
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resolution of the identity, and pulling out the time-dependence, we find

〈bi, `+ ∆`,n + ∆n|HI |ai, `, n〉

=
1

2
~Ω
∑
`′

〈`+ ∆`|ei
1
2

(ζiL++ζ∗i L−)|`′〉
∏
j

〈`′,n + ∆n|ei
1
2

(η̃ijL++η̃∗ijL−)(aj+a
†
j)|`,n〉

× e−i[∆−([(`+∆`)2−`2]ωr+
∑
j ∆nj ωj)]t + h.c.

(3.41)

Two notes to interpret this result are as follows:

• As usual, we are able to express the matrix elements in terms of matrix elements of time-
independent Schrödinger picture operators. The time dependence from the interaction-
picture operators becomes a phase factor representing the resonance condition. In this
case, the resonance is at the sum of detunings due to the rotational ` → ` + ∆`
transition and the vibrational nj → nj + ∆nj transitions. This is as expected from
conservation of energy.

• The matrix element has been broken into a product of more manageable matrix el-
ements, at the cost of introducing an infinite sum over rotational states `′ from a
resolution of the identity.

3.4.3 Approximations of the matrix elements in special cases

To further analyze these matrix elements, we must make some assumptions, so only a few
special cases of interest will be considered. We consider only one vibrational mode for
simplicity, so that for the calculation the ion and mode indices i and j may be dropped. The
matrix element (3.41) in this case is written

Ω`,n,`+∆`,n+∆n = 〈b, `+ ∆`, n+ ∆n|HI |a, `, n〉

= 1
2
~Ω
∑
`′

〈`+ ∆`|ei
1
2

(ζL++ζ∗L−)|`′〉 〈`′, n+ ∆n|ei
1
2

(η̃L++η̃∗L−)(a+a†)|`, n〉 .

(3.42)

We further make the Lamb-Dicke approximation, which here means |η̃ij|2(2nj + 1)� 1. In
this case,

ei
1
2

(η̃L++η̃∗L−)(a+a†) = 1 +
i

2
(η̃L+ + η̃∗L−)(a+ a†) +O(|η̃|2). (3.43)

Some special cases to consider are the following:

1. Transitions of the form `→ `+ ∆`, n→ n
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To first order, only the carrier term of (3.43) contributes, as that is the only term
which will not change the vibrational quantum number.

Ω`,n,`+∆`,n+∆n =
∑
`′

〈`+ ∆`|ei
1
2

(ζL++ζ∗L−)|`′〉 〈`′, n|ei
1
2

(η̃L++η̃∗L−)(a+a†)|`, n〉

≈
∑
`′

〈`+ ∆`|ei
1
2

(ζL++ζ∗L−)|`′〉 〈`′, n|`, n〉

= 〈`+ ∆`|ei
1
2

(ζL++ζ∗L−)|`〉
= ei∆`[arg(ζ)+π/2] J∆`(|ζ|),

(3.44)

precisely as found in (3.31).

2. Transitions of the form `→ `, n→ n+ 1

Here, only terms of (3.43) containing a† will contribute.

Ω`,n,`+∆`,n+∆n =
∑
`′

〈`|ei
1
2

(ζL++ζ∗L−)|`′〉 〈`′, n+ 1|ei
1
2

(η̃L++η̃∗L−)(a+a†)|`, n〉

≈
∑
`′

〈`|ei
1
2

(ζL++ζ∗L−)|`′〉 〈`′, n+ 1| i
2

(η̃L+ + η̃∗L−)a†|`, n〉

= − |η̃|
√
n+ 1 J1(|ζ|) Re

(
ei[arg(η̃)−arg(ζ)]

)
(3.45)

To interpret this result, we may compare to the case of a static Coulomb crystal. In
that case, the magnitude of the equivalent matrix element (i.e. where the motional
quantum number increases by 1) is η

√
n+ 1, (2.36b). The above result for a crystal

which is allowed to rotate is similar, but with |η̃| replacing η, and multiplied by two
additional factors:

• The first factor is J1(|ζ|). This is also the magnitude of the matrix element for a
|`〉 → |`+ 1〉 transition. We can interpret this from the structure of (3.42), which
contains a product of two matrix elements: One for the rotational part alone, and
one for the vibrational part which necessarily also contains rotational operators.
This may be interpreted as two energy-conserving processes. In the Lamb-Dicke
expansion (3.43), we see that a change in vibrational quantum number must come
with a change in rotational quantum number. Thus in order to change only the
vibrational quantum number, one of these processes must change the rotational
quantum number by 1 (with magnitude ∼ |η̃|

√
n+ 1), and the other must change

it back (with magnitude ∼ J1(|ζ|)).
• The second factor is Re

(
ei[arg(η̃)−arg(ζ)]

)
, which arises from the interference of the

` ± 1 terms that contribute. This factor effectively measures the relative phase
between the rotational and vibrational parameters ζ and η̃. This relative phase
encodes how “radial” the mode j is for ion i; if the ion’s motion due to mode j
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Figure 3.7: Sample spectrum showing the coupling strengths of rovibrational transitions.
The y-axis is the magnitude of the matrix elements of the operator (3.43). The vibrational
mode has a frequency of 2 MHz and the rotation frequency is set to 100 kHz, so that rotational
transitions are grouped within the separated vibrational sidebands. The vibrational Lamb-
Dicke parameter is η = 0.2, and ζ = 3.86. Because ζ is near a zero of J1, the coupling
strength of the ∆` = 1 transition nearly vanishes, but on the ∆n = 1 vibrational sideband,
the ∆` = 1 transition is allowed.

is outward from the crystal’s axis of rotation, then the relative phase is zero and
this matrix element is maximum. If the ion’s motion due to mode j is tangent
to the crystal’s rotation, then the relative phase is π/2 and this matrix element
vanishes.

This result demonstrates that, even when addressing a purely vibrational sideband (i.e.
with no rotational transition, ∆` = 0), the coupling strength is affected by the presence
of a rotational degree of freedom. This is to be contrasted with the case of a purely
vibrational ion crystal, where each mode of motion acts independently of the others.
In special cases, the first vibrational sideband can vanish entirely, independent of the
state of the vibrational motion. It will vanish exactly for a mode with components
only in the angular direction, and will also vanish to first order in |η̃| for a wavevector
such that |ζ| is a zero of the Bessel function J1, as shown in Fig. 3.7.

3. Transitions of the form `→ `+ ∆`, n→ n+ 1

This is the generalization of the previous case, where we now allow the angular mo-
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mentum quantum number to change as well.∑
`′

〈`+ ∆`|ei
1
2

(ζL++ζ∗L−)|`′〉 〈`′, n+ 1|ei
1
2

(η̃L++η̃∗L−)(a+a†)|`, n〉

≈ |η̃|
√
n+ 1

1

2

[
ei[arg(η̃)−arg(ζ)]J∆`−1(|ζ|)− e−i[arg(η̃)−arg(ζ)]J∆`+1(|ζ|)

]
ei∆`[arg(ζ)+π/2]

(3.46)

Unlike the previous case, we have two terms which contain Bessel functions of different
orders, and thus do not in general vanish in special cases. It is clear that this matrix
element is not a simple product of the two matrix elements for the individual transitions
|`〉 → |`+ ∆`〉 and |n〉 → |n+ 1〉, unlike the (3.8b), where the transition of each
vibrational mode contributes an independent factor to the overall matrix element.

In cases 2 and 3 considered above, the result is the same if we instead consider the red
vibrational sideband |n〉 → |n− 1〉, except with the factor

√
n+ 1 replaced by

√
n.

3.4.4 Summary

Table 3.2 summarizes the coupling strengths computed for vibrational and rotational tran-
sitions.

Measurements of pure rotational sideband coupling strengths have been done in this
work, but not rovibrational sidebands. Measuring a rovibrational spectrum would be chal-
lenging, as we use a nearly vertical beam to measure rotational sidebands, which significantly
suppresses coupling to in-plane vibrational modes.

3.5 2-ion crystals in a planar non-rigid rotor

This section outlines some modifications to the results of the previous section which occur
when the rigid rotor assumption is relaxed, and centrifugal effects are considered. This
is done perturbatively to first order only. Only the energy eigenspectrum is considered;
laser-ion interaction coupling strengths are not. Practically, a modification to the energy
spectrum of the order 10−2 could be significant, but a modification of the same order to
coupling strengths will not. This section also considers only a 2-ion crystal, the simplest
case.

The rigid rotor condition was defined previously by (3.18). It is useful to rewrite the
rotor rigidity condition as ε` � 1, defining the small parameter ε` which can be written in
several equivalent ways:

ε` ≡
r` − r0

r0

=
~2`2

3I2
0ω

2
x

=
D`2

ωr0
=

4ω2
r0`

2

3ω2
x

≈
(

ωrot
`

ωstretch

)2

. (3.47)
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Case Transition form Relative coupling strength Approximations in special cases

1 ion,
1 vib. mode

|n〉 → |n+ ∆n〉
e−η

2/2η|∆n|

× L
(|∆n|)
min(n,n+∆n)(η

2)

×
(

n!
(n+∆n)!

)sign(∆n)/2
(2.34)

Lamb-Dicke regime:

∆n = 0 1− η2

∆n = 1 η
√
n+ 1

(2.36)

N ions,
3N vib. modes

|n〉 → |n + ∆n〉

∏
j e
−η2

j /2η
|∆nj |
j

× L
(|∆nj |)
min(nj ,nj+∆nj)

(η2
j )

×
(

nj !

(nj+∆nj)!

)sign(∆nj)/2
(3.8) (products of above cell)

2 ions,
1 rot. mode

|`〉 → |`+ ∆`〉 J∆`(|ζ|) (3.30) (none necessary)

N ions,
1 rot. mode +
2N − 1 in-plane
vib. modes

|`,n〉 →
|`+ ∆`,n + ∆n〉

No closed-form expression;
Written in terms of matrix
elements in (3.41)

Lamb-Dicke regime,
1 vib. mode only:

∆n = 0 J∆`(|ζ|) (3.44)

∆n = 1

1
2
|η̃|
√
n+ 1

× [eiαJ∆`−1(|ζ|)
−e−iαJ∆`+1(|ζ|)],
where α =
arg(η̃)− arg(ζ)

(3.46)

Table 3.2: Summary of relative coupling strengths for motional transitions. Relative coupling strength refers to the
coupling strength of the transition divided by the bare electronic Rabi frequency Ω. Each expression for a coupling
strength includes a reference to the corresponding equation in the text. Here, overall phase factors are omitted.
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The quantity D, defined as

D ≡ 4ω3
r0

ω2
stretch

=
4ω3

r0

3ω2
x

, (3.48)

is the centrifugal distortion constant commonly used in the context of diatomic molecules
[29].

Definitions of new symbols used in (3.47) are as follows:

• r` is the centrifugally distorted equilibrium radius when the angular momentum quan-
tum number is equal to `, and r0 is the equilibrium radius in the absence of centrifugal
effects.

• ωr0 is the same rotation constant defined by (3.22), but with an extra subscript 0 to
indicate that this is the value in the absence of centrifugal effects, in anticipation that
we will find that the effective rotation constant changes due to centrifugal distortion
(see Sec. 3.5.4).

• I0 is similarly the moment of inertia in the absence of centrifugal effects.

• ωrot
` is the rotation frequency at angular momentum quantum number `, with a sub-

script ` to make the `-dependence explicit. In the absence of centrifugal effects, this is
given by (3.23).

• ωstretch is the stretch mode frequency.

In the final equality of (3.47), we use the relationship between the angular momentum and
classical rotation frequency, ωrot

` = 2ωr0`. This is only approximately true since the rela-
tionship between rotation frequency and angular momentum quantum number depends on
the moment of inertia, which itself also changes due to centrifugal effects; see Sec. 3.5.4.
However, it is the most practically useful relation, as it is written in terms of 2 measur-
able quantities, the rotation frequency and the stretch mode frequency. When the rotation
frequency is large enough such that it is comparable to the stretch motion frequency, the
rigid rotor approximation no longer holds. In this section, only leading-order corrections
to the rigid rotor approximation are considered, i.e. when the quantity ε` is not negligible,
but still small enough that second-order corrections may be ignored. An example of typical
experimental parameters is ωr = 2π× 10 Hz, ωstretch = 2π× 2 MHz, and ωrot

¯̀ = 2π× 150 kHz
(where ¯̀ is the mean of the rotational state, which in general has some distribution over
angular momenta). In this case, D = 2π × 1 nHz and ε¯̀ = 6× 10−3.

3.5.1 Centrifugal distortion

Sec. 3.3 derives the normal modes of motion for a 2-ion rotor. The final step in this process
before invoking the rigid rotor approximation was writing the potential energy of the motion
of the relative coordinate, (3.11). The following step was to solve for the equilibrium positions
expand the potential about that point. If the rotor is not rigid, then the rotational motion will
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create a centrifugal potential and thus modify the equilibrium positions. Thus we must first
find the new equilibrium position in the non-rigid case. Including the centrifugal potential
term, (3.11) is modified to

U`(r) =
1

2
µ(ω2

xρ
2 + ω2

zz
2) +

e2

4πε0

1√
ρ2 + z2

+
~2`2

2µρ2
. (3.49)

It will be convenient here to shift into laboratory-frame coordinates, using the physical radius
of the rotor r = ρ/2 as well as the true mass of each ion m = 2µ:

U`(r, z) = m
(
ω2
xr

2 + 1
4
ω2
zz

2
)

+
e2

4πε0

1√
4r2 + z2

+
~2`2

4mr2
. (3.50)

To solve for the radius r which minimizes this potential, we set z = 0 and solve ∂U`/∂r = 0.
We write r = r0 + δr and expand perturbatively:

U`(r) = mω2
xr

2 +
e2

8πε0r
+

~2`2

4mr2

= mω2
x(r0 + δr)2 +

e2

8πε0(r0 + δr)
+

~2`2

4m(r0 + δr)2
.

(3.51)

Setting ∂U`/∂r = ∂U`/∂δr = 0 and solving for δr, we find, to first order in δr/r0,

δr`
r0

=
~2`2

12m2r4
0ω

2
x

= ε`. (3.52)

The subscript ` in δr` indicates that this is the solution for angular momentum quantum
number `. This is the same quantity from (3.18), rewritten in laboratory-frame coordinates.
This justifies the claim from Sec. 3.3 that the rigidity condition should be defined by the
condition (3.18), which we later define as ε` in (3.47). The radius of a non-rigid rotor is
therefore approximately r` = r0(1 + ε`).

3.5.2 Non-rigid corrections to individual modes

In the presence of centrifugal distortion, the potential of all three “relative motion” degrees
of freedom of a 2-ion crystal is modified: the vertical rocking motion, the stretch motion,
and the rotational motion. All of these modifications arise from the centrifugal distortion
increasing the distance between the ions, which in turn modifies the respective motional
frequencies.

Vertical rocking mode

To analyze the vertical rocking mode, we first expand the potential (3.50) about z = 0:

U`(r, z) ≈ m
(
ω2
xr

2 + 1
4
ω2
zz

2
)

+
e2

4πε0

(
1

2r
− z2

16r3

)
+

~2`2

4mr2
. (3.53)



CHAPTER 3. THE TRAPPED-ION PLANAR QUANTUM ROTOR 59

We are interested in the coordinate z, so we can set the radius r of the rotor to be equal
to the centrifugally distorted radius at rotational quantum number `, r` = r0(1 + ε`) and
perturbatively expand:

U`(r`, z) ≈
1

4
mω2

zz
4 − e2

64πε0r3
0(1 + ε`)3

z2 + (constant terms)

=
1

4
m

[
ω2
z −

ω2
x

(1 + ε`)3

]
z2

≈ 1

4
m

[√
ω2
z − ω2

x

(
1 +

3ω2
x

2(ω2
z − ω2

x)
ε`

)]2

z2.

(3.54)

Therefore, the vertical rocking mode frequency, to first order due to centrifugal effects, is

ωvert rock = ωvr ≈
√
ω2
z − ω2

x

(
1 +

3ω2
x

2(ω2
z − ω2

x)
ε`

)
(3.55)

Centrifugal distortion increases this frequency by a factor of 1 + [3ω2
x/2(ω2

z − ω2
x)]ε`. The

correction term is half the square of the ratio of the stretch mode frequency to the rocking
mode frequency (in the absence of distortion). Typically in the work done in this thesis,
ωz ≈ 2ωx, in which case this correction term is approximately ε`/2.

Stretch and rotational modes

These two modes take place within the horizontal plane, so we begin by taking the potential
(3.50) and setting z = 0. We will need to expand the coordinate r about its equilibrium
position r`, which depends on the angular momentum quantum number. It will be convenient
to write the coordinate r as r = r0(1 + ε` + a). The explicit expansion of r` into r0(1 + ε`)
makes it clear where the quantity ε` shows up, which is convenient since it is our expansion
parameter. This defines a dimensionless coordinate a = (r − r`)/r0, which rescales r − r`,
the deviation of r from its equilibrium point, in units of r0. Rewriting (3.50) in these terms
with z = 0,

U`(a, 0) = mω2
xr

2
0(1 + ε` + a)2 +

e2

4πε0r0

1

(1 + ε` + a)
+

~2`2

4mr2
0

1
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1
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+ ~ωr0`2 1

(1 + ε` + a)2

(3.56)

We expand this potential to second order in a to recover a harmonic potential. We also keep
terms only to first order in ε`.

U`(r) ≈ 3mω2
x(r − r`)2(1 + ε`) + ~ωr0`2(1− ε`)

≈ m
[√

3ωx(1 + 1
2
ε`)
]2

(r − r`)2 + ~ωr0`2(1− ε`)
(3.57)



CHAPTER 3. THE TRAPPED-ION PLANAR QUANTUM ROTOR 60

The stretch mode frequency to first order due to centrifugal effects is thus

ωstretch = ωs =
√

3ωx
(
1 + 1

2
ε`
)

(3.58)

The final term, the rotational energy, may be written as

Erot
` = ~(ωr0`

2 −D`4), (3.59)

where D is the distortion constant defined in (3.48). This lowers the energy of a given
angular momentum state compared with the rigid case. The physical reason for this is that
centrifugal distortion expands the size of the rotor, increasing its moment of inertia, and
thus decreasing its classical angular velocity for a given angular momentum.

3.5.3 Energy eigenspectrum

The energy eigenspectrum of the vertical rocking, stretch, and rotational motion will be
given by

E(nvr, ns, `) = ~ωvr(nvr + 1
2
) + ~ωs(ns + 1

2
) + Erot

` (3.60)

where the final term is given by (3.59). In the presence of centrifugal distortion, the en-
ergy eigenspectrum of the three modes is not separable, since now the rocking and stretch
mode frequencies, given by (3.55) and (3.58) respectively, depend on the rotational quantum
number ` via ε`. To make this explicit, we can write ε` as D`2/ωr0:
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√
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2
)

+ ~(ωr0`
2 −D`4)

(3.61)

The transition frequency for a unit increase in the vibrational mode quantum numbers
depends on ` and is already given by (3.55) and (3.58). The transition frequency for a
unit increase in the rotational quantum number `, E(nvr, ns, `+ 1)−E(nvr, ns, `), also now
depends on the values of nvr and ns. With typical experimental parameters, these corrections
are very small unless n & 103, at which point they become only corrections to the non-rigid
correction term.

3.5.4 Corrections to experimentally relevant rotational
parameters

In general, the state of the rotational degree of freedom may be a distribution of angular
momenta, in which case corrections to relevant quantities such as the energy spectrum of
the stretch mode will also have some spread. As mentioned in Sec. 3.3.4, a typical state of
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our trapped-ion rotor is one whose angular momentum is large and well-localized, ¯̀� σ`.
The small spread makes it convenient to characterize the non-rigid correction factor by only
the mean value of the distribution, such that ε¯̀ alone approximately fully characterizes non-
rigid correction quantities. One way to manifest this approximation is to define an effective
rotational constant ωr,`, and substitute its value at ¯̀, ωr,¯̀, in for the rotational constant.
Due to the nonlinearity of the corrections, the appropriate effective rotational constant will
depend on the quantity of interest.

Rotational energy spectrum

Equation (3.59) gives the non-rigid energy spectrum, which may be rewritten as

E` = ~`2(ωr0 −D`2) = ~ωr0`2(1− ε`). (3.62)

Defining the “effective” rotational constant as ωr,¯̀ = ωr0(1−D ¯̀2) = ωr0(1− ε¯̀), the energy
may be written as approximately

E` ≈ ~ωr, ¯̀̀ 2, (3.63a)

where
ωr,¯̀ = ωr0(1− ε¯̀). (3.63b)

This approximation holds only for values of ` near ¯̀.

Rotation frequency and transition frequencies

The rotation frequency ωrot
` is in general is related to the angular momentum in terms of the

moment of inertia I via L = Iωrot
` =⇒ ωrot

` = ~`/I. When the rotor is not rigid, the radius
depends on `, and thus in turn so does the moment of inertia. To leading order,

ωrot
` =

~`
I`

=
~`

2mr2
`

=
~`

2mr0(1 + ε`)2
≈ ~`
I0

(1− 2ε`) = 2ωr0`(1− 2ε`). (3.64)

Thus with the appropriate effective rotational constant ωr,¯̀,

ωrot
` ≈ 2ωr, ¯̀̀ (3.65a)

where
ωr,¯̀ = ωr0(1− 2ε¯̀). (3.65b)

Note that the correction term 2ε¯̀ differs by a factor of 2 from the corresponding correction
term for the energy (3.63b). Again, the above approximation holds only for values of ` near
¯̀.

In Sec. 3.3.3 we found the transition frequency from |`〉 to |`+ ∆`〉 to be approximately
∆` ωrot

` , as long as `� ∆`. This proportionality between rotation frequency and transition
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frequency continues to hold for the non-rigid rotor. To see this, we compute the difference
ω`+∆`,` = (E`+∆` − E`)/~ with each term given by (3.59). The leading-order result is

ω`+∆`,` =
E`+∆` − E`

~
≈ ∆`(2ωr0`− 4D`3) = ∆` 2ωr0`(1− 2ε`). (3.66)

Thus if we again define ωr,¯̀ = ωr0(1− 2ε¯̀), then

E`+∆` − E`
~

≈ ∆` 2ωr, ¯̀̀ = ∆` ωrot
` (3.67)

as defined by (3.65a). Thus when computing non-rigid-corrected transition frequencies, the
appropriate effective rotational constant is ωr,¯̀ = ωr0(1 − 2ε¯̀), the same as for computing
the non-rigid-corrected rotation frequency.

Spread in angular momentum

The angular momentum spread σ` of the state of the rotational mode is an important exper-
imental parameter (see Chapter 6). This is measured by measuring the spread in transition
frequencies of a rotational sideband of order ∆`, which effectively leads to a broadening of
the sideband. It is thus necessary to understand the relationship between the measured side-
band linewidth (a spread in frequency space) and the spread of the angular momentum state.
Defining the transition frequency between states |`〉 and |`+ ∆`〉 as ω`+∆`,`, we are interested
in the unit change in this transition frequency: ω`+∆`+1,`+1 − ω`+∆`,`. For a perfectly rigid
rotor, this is equal to exactly 2ωr0∆`: each increment in ` increases the transition frequency
(of the ∆`-order transition) by 2ωr0∆`. Thus if the angular momentum state has a spread
σ`, the transition frequencies of transitions of order ∆` will have a spread of 2ωr∆`σ`. If we
include non-rigid correction terms, then

ω`+∆`+1,`+1 − ω`+∆`,` =
E`+∆`+1 − E`+1

~
− E`+∆` − E`

~
≈ (2ωr0 − 12D`2)∆`. (3.68)

We thus recover the original expression for the transition frequency difference if we define
the effective rotational constant

ωr,¯̀ = ωr0(1− 6ε¯̀), (3.69)

whereupon we may write the rotational sideband linewidth as 2ωr,¯̀∆`σ`. Note that the
correction term for the effective rotational constant is 6ε¯̀, which differs from the appropriate
correction term when computing energies (ε¯̀) and transition frequencies (2ε¯̀).

Computing the correction factor itself

All non-rigid corrections in this section have been given in terms of the small parameter
ε`, which depends on the angular momentum quantum number. In practice, we measure
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rotation frequency rather than angular momentum quantum number. This poses an apparent
complication since the relationship between rotation frequency and angular momentum itself
depends on ε` and thus on angular momentum. In fact, the corresponding correction is second
order and thus negligible. To show this, we can use the relations ε` = 4ω2

r0`
2/3ω2

x from (3.47)
and ωrot

` = 2ωr0`(1− 2ε`) from (3.64):

ε` =
4ω2

r0`
2

3ω2
x

≈ (ωrot
` )2(1 + 4ε`)

3ω2
x

. (3.70)

This is an implicit expression for ε`. Solving it,

ε` =

(ωrot
` )2

3ω2
x

1− 4
(ωrot
` )2

3ω2
x

≈ (ωrot
` )2

3ω2
x

+ 4

[
(ωrot

` )2

3ω2
x

]2

. (3.71)

We have already assumed that the ratio ωrot
` /3ω2

x is small, so the second term of the above
equation is higher order in the very same parameter. Thus it suffices to write our correction
parameter ε` as being equal to ωrot

` /3ω2
x. It is for this reason that the final equality of

(3.47) is only approximately true, though it is correct to first order, which is the level of
approximation we are interested in.
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Chapter 4

Experimental setup

At the center of the experimental setup is an ultra-high vacuum chamber, held at a pressure
below 10−11 Torr. Internal to the chamber is the ion-trap chip and calcium source. External
to the chamber are sources of electrical signals which are routed into the chamber, laser light
sources and their respective control systems, optics and electronics for ion detection, and
magnets. The chamber is surrounded by a Faraday cage to prevent electrical noise.

4.1 General instrumentation

4.1.1 Lasers

A total of six lasers are used for our experiments with 40Ca+ . Four of the lasers correspond
to the wavelengths shown in Fig. 2.5 for driving electronic state transitions in 40Ca+ : 397 nm
for S1/2 ↔ P1/2, 866 nm for D3/2 ↔ P1/2, 854 nm for D5/2 ↔ P3/2, and 729 nm for S1/2 ↔
D5/2. Two additional lasers are used for photoionization of neutral Ca to create Ca+. This
photoionization is done with a two-photon process: 423 nm light drives a transition from
S1/2 to P1/2 in neutral Ca, and 375 nm light promotes the P1/2 population to the continuum,
completing the ionization process.

All lasers used are diode lasers. The 854 nm and 866 nm light beams are generated directly
by their respective laser diodes, and are frequency-stabilized by Pound–Drever–Hall locking
to external cavities. The 397 nm light is derived from 794 nm light generated by a diode
laser, then frequency doubled via second-harmonic generation to 397 nm. The 397 nm light
is stabilized by locking the 794 nm light to an external cavity. The 423 nm and 375 nm lasers
are generated from diodes and are left free-running with no external cavity locking. Finally,
the 729 nm laser light is stabilized by locking to a high-finesse cavity. This light is then
amplified with two stages of injection locking, followed by two stages of tapered amplifiers.
Locking the 854, 866, and 397 nm lasers to their respective cavities yields linewidths of order
10 MHz. Locking to the high-finesse 729 nm cavity yields a linewidth of less than 1 kHz, as
required to coherently drive the S1/2 ↔ D5/2 electric quadrupole transition in 40Ca+ .
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Figure 4.1: Photograph of the compact AOM setups.

Each of the laser wavelengths is generated in a room separated from the vacuum chamber
and delivered to the experiment via optical fibers. These fibers output 500 µW – 2 mW of
light for the 397, 866, 854, 423, and 375 nm lasers. The fiber for the 729 nm laser outputs
approximately 20 mW.

The 397, 866, 854, and 729 nm light used for running experiments with trapped 40Ca+ is
passed through acousto-optic modulator optical systems before delivery to the vacuum cham-
ber (where the ions reside). The AOMs provide control over these beams at the chamber
(see Sec. 4.1.2). The 423 nm and 375 nm photoionizing beams are delivered directly to the
chamber by the fibers from the laser room, with a simple mechanical shutter for binary
control.

4.1.2 Acousto-optic modulator systems

Timing, frequency, and amplitude control of the lasers are achieved with acousto-optic mod-
ulators (AOMs). Each of the AOM systems in this experimental setup use AOMs in the
double-pass configuration, where the light is passed through the same AOM twice in order
to mitigate effects of the diffracted beam angles changing with RF drive frequency by can-
celing their first-order dependency. The full optical systems for the AOMs include optics to
focus the beam into the center of the piezoelectric crystal, separate out the +1 or −1 order
diffracted beam, reflect and re-focus it back into the AOM for the second pass, and finally
deliver it to an optical fiber which in turn delivers it to the vacuum chamber.

While the double-pass configuration cancels first-order sensitivities of diffracted beam
angle with AOM drive frequency, there still remains some dependence. This presents a
problem since the position of the beam at the output of the AOM system, and thus in turn



CHAPTER 4. EXPERIMENTAL SETUP 66

10−2

10−1

100

R
el

a
ti

ve
o
u

tp
u

t
p

ow
er

854 nm
Non-compact

(a)

866 nm
Non-compact

(b)

60 80 100

Drive frequency (MHz)

10−2

10−1

100

R
el

a
ti

ve
o
u

tp
u

t
p

ow
er

854 nm
Compact

(c)

Pass 1

Pass 2

At chamber

60 80 100

Drive frequency (MHz)

866 nm
Compact

(d)

Pass 1

Pass 2

At chamber (v)

At chamber (h)

Figure 4.2: Measurements of the bandwidth of the 854 and 866 nm AOM setups, before
and after switching to the compact design. Power is measured at the location indicated by
the legend and plotted relative to the maximum measured value. In all cases, the target
center frequency is 80 MHz. The 866 nm setup has two output fibers, one to address the ions
vertically (v) and one to address them horizontally (h).

the efficiency of the coupling to the optical fiber, will depend on the drive frequency. This
can limit the practical bandwidth of the AOM system. The AOM systems in this setup,
shown in Fig. 4.1, are designed to be as compact as possible to minimize the optical path
length. The design choices made to this end include using small components (e.g. 1/2 inch
diameter mirrors), and focusing the beam into the first AOM pass using the collimator from
the input fiber to the system, and into the second pass using a curved mirror. This obviates
the need for additional focusing lenses. In addition, the AOM systems are built onto their
own small optical breadboards for modularity. The 854 and 866 nm laser AOM systems are
built onto the same board so that they may share an output fiber. The 729 nm laser AOM
system contains two AOMs, each with its own output fiber: one to address the ions parallel
to the trap surface, and one to address them normal to the trap surface.

Prior to the compact AOM systems, all AOM systems used in this experiment had
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comparatively long optical path lengths. A comparison of the performance of the non-
compact and compact versions of the AOM systems for the 854 and 866 nm lasers can be seen
in Fig. 4.2. The performance after the first pass through the AOM indicates the intrinsic
bandwidth of the AOM device itself, while that at more downstream locations indicates
losses due to changes in beam angle along the optical path. After switching to compact
AOM setups, the bandwidth of both setups was improved. The efficiency at the optimal
AOM frequency remained approximately the same.

4.1.3 Other optics

Ions are imaged by an objective lens which resides immediately outside the vacuum cham-
ber. The objective is bichromatic for 397 nm and 729 nm light. 397 nm photons which are
fluoresced by ions are focused by the objective onto an image plane, after which the image
light is split with a pellicle beamsplitter onto a photo-multiplier tube (PMT) and an Andor
Luca EMCCD camera. The PMT provides photon counts for detection of ions, as well as
for state discrimination at the readout stage of an experiment between the bright (S1/2) and
dark (D5/2) qubit states. The camera is also used for ion detection and for beam alignment.

4.1.4 Experiment control electronics

Electrical RF signals to control the AOMs, as well as simple binary transistor-transistor logic
(TTL) signals for other devices such as switches, are provided by a piece of custom hardware
named the pulse sequencer, or pulser [30]. The pulser contains direct digital synthesizer
(DDS) boards to generate the RF signals for driving the AOMs and several TTL channels.
Sequences of pulses of these DDS and TTL channels can be programmed onto an FPGA. The
timing is controlled with the aid of an external clock, which is provided by a 800 MHz signal
generated by a function generator. The pulser also records the photon counts generated by
the PMT for the purposes of state readout.

4.1.5 Trapping electronics

RF Drive

The RF voltage to provide the Paul-trapping potential is sourced by a Rhode & Schwarz
SMB 100A signal generator, typically operated at an output power between 18 and 24 dBm.
This RF signal is passed through an inductive transformer, known as the resonator, made
of copper wire wound about a toroidal iron core. When loaded by the 22 pF capacitive load
provided by the trap’s RF electrodes, the resonator has a resonance frequency of 21.4 MHz.
When properly grounded, the resonator provides voltage amplification with a Q factor of
about 29.
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DC Voltages

DC voltages are applied to DC electrodes to provide compensating electric fields at the
location of the ions. These fields compensate stray dipole and quadrupole fields. The voltages
are sourced from a custom-built digital-to-analog converter (DAC) system, which can provide
up to ±10 V DC.

4.1.6 Calcium ion production

Calcium ions are produced by an oven, composed of a tube of high-purity calcium granules
and a wire to pass current through it. When a current is passed through the granules, they
heat up and sublimate, creating a stream of gaseous neutral calcium directed above the trap
surface. The 423 and 375 nm photoionizing lasers illuminate the trapping location, as do the
397 nm and 866 nm cooling lasers. When a passing calcium atom is ionized near the center
of the trapping potential and has little enough kinetic energy, it becomes trapped. It then
scatters 397 nm photons off of the S1/2 ↔ P1/2 transition, producing fluorescence which may
be detected by the PMT or camera.

4.1.7 Magnetic field

An applied magnetic field is necessary for the purposes of inducing a Zeeman splitting,
particularly for the S1/2 ↔ D5/2 transition so that Zeeman sublevels may be spectrally
resolved by the 729nm laser. This is applied by small highly temperature-stable permanent
magnets held by a 3D-printed holder, mounted near the vacuum chamber. This provides a
magnetic field of 3 − 5 Gauss at the location of the ions, providing a Zeeman splitting of a
few MHz between neighboring S1/2 ↔ D5/2 lines, and spanning about 20 MHz total. This
splitting is large enough that motional sidebands of different S1/2 ↔ D5/2 transitions can
be resolved, but small enough that the AOM (center frequency 220 MHz) can span the full
range of Zeeman transitions.

The choice of permanent magnets over coils of wire is primarily for stability of the mag-
netic field. This comes at the cost of making it difficult to change the magnetic field, as
magnets need to be manually added or removed. It is particularly difficult to tune the mag-
netic field to a precise desired value or direction, as there is no precise way to predict the
field resulting from a particular arrangement of magnets other than to use a trapped ion to
measure it after making each manual change. This choice is thus only appropriate for cases
where it is not important for the magnetic field to be precisely tuned, which is the case in
this work. We set the direction of the magnetic field only roughly such that it is close to
optimizing the coupling strength of the ∆m = 0 electronic S1/2 ↔ D5/2 when the 729 nm
laser addresses the ions normal to the trap surface, which is done when the ions are rotating
(see Chapter 6).
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Figure 4.3: Voltage pattern required on the trap DC electrodes to allow simultaneously for
stray field compensation and ion rotation.

4.1.8 Software

Control of the experiment, which primarily includes programming timed sequences of DDS
and TTL pulses onto the pulser, reading photon counts from the PMT, and handling data
flow, is handled by LabRAD [31]. This is instantiated in Python, and provides a server-client
architecture which allows for asynchronous independent control of different devices relevant
to the experiment, such as the pulser and the DAC.

4.2 Instrumentation for ion rotation

The instrumentation which is unique for this experimental setup is centered around ion
rotation. This includes electronics for enabling the rotation, and lasers for cooling and
addressing the ion crystal normal to the trap surface. The ion trap itself is discussed in
Sec. 2.2.4.

4.2.1 Electronics for ion rotation

As discussed in more detail in Sec. 6.2, rotating a Coulomb crystal of ions is done by applying
a rotating quadrupole potential. This can be achieved by sourcing only two unique voltages
and applying them in the appropriate pattern to the eight DC electrodes of the trap, with
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Figure 4.4: Image of the rotation circuit, with a schematic for one of the eight output
channels.

some of the signals inverted. This is in principle straightforwardly achieved by using a two-
channel arbitrary waveform generator (AWG), duplicating the outputs, and inverting some
of the duplicates using an inverting op-amp to produce voltages ±V AWG

a (t) and ±V AWG
b (t),

where V AWG
a,b (t) are the outputs of the two channels of the AWG. However, we additionally

require that the DC electrodes still serve the purpose of compensating stray dipole and
quadrupole electric fields. This in general requires each to have a unique static offset vDAC

i ,
which is provided by the DAC. These two purposes, ion rotation and field compensation, can
be served simultaneously by adding the respective required voltages. The resulting required
voltage on the DC electrodes is shown in Fig. 4.3. Producing these voltages is done using a
custom-built circuit, the rotation circuit.

The rotation circuit

The rotation circuit serves three main purposes: (1) to invert the AWG voltage (where
necessary), (2) to add together voltages from the DAC for field compensation and from
the AWG for ion rotation, and (3) to provide current buffering to enable driving the DC
electrodes, which are RC low-pass filtered, at frequencies on the order of 100 kHz. An
image of the rotation circuit is shown in Fig. 4.4. Above, a schematic is also shown for
one of the eight output channels. Inversion and addition is provided by op-amps, and a
high-current buffer provides additional current output capabilities, which is required to be
roughly 100 mA. For channels where the AWG voltages should be added to the DAC voltage
rather than subtracted, the inversion step is omitted. More details about the rotation circuit
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Objective
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866 nm729 nm

Figure 4.5: Schematic of beam orientations for 866 nm Doppler cooling of the vertical direc-
tion. The 866 nm laser provides cooling, and 397 nm laser repumps the ions without being
directed toward the trap surface. This cooling allows the vertically oriented 729 nm beam to
coherently address the ions.

can be found in Ref. [16].

The arbitrary waveform generator

The AWG used is a Keysight 33500B, which provides 1 million waveform points at a sample
rate of up to 250 megasamples per second. We interface with it via a custom LabRAD server
that allows for programming arbitrary waveforms within the same interface that controls the
rest of the experiment.

4.2.2 Vertical 729 nm and 866 nm laser beams

As discussed in Chapter 6, it is best to address a rotating ion crystal with a 729 nm laser
beam which is oriented nearly normal to the plane of rotation. Doing so coherently requires
that the vibrational motion of the crystal in the normal direction is cold, and thus we also
require cooling lasers to be oriented along the rotor normal. This is an atypical requirement;
nearly all surface ion traps are concerned only with ion motion within the plane parallel to
the surface. Doppler cooling is typically performed with the 397 nm laser, but blue or UV
laser light directed at the trap surface risks photo-electric charging of and damage to the
trap. Thus instead, we direct a beam of 866 nm laser light, which is typically used only for
repumping during Doppler cooling, vertically to provide Doppler cooling. In this scheme,
a 397 nm beam oriented parallel to the trap surface provides the repumping. This presents
additional challenges in Doppler cooling (see Sec. 2.6.2). Sideband cooling is provided by
the same vertically oriented 729 nm beam used for coherent addressing. To achieve verti-
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Figure 4.6: Photograph of the experimental setup with the Faraday cage.

cally oriented beams, both the 729 nm and the 866 nm beams are focused through the same
objective used to collect ion fluorescence. This scheme is shown in Fig. 4.5. There is also
a horizontally oriented counterpart for each. The 729 nm laser in particular has its own
AOM control for the horizontal and vertical beams to allow for sideband cooling and state
preparation in either direction independently.

4.3 Faraday cage

The experimental setup is surrounded by a Faraday cage, constructed from five sheets of
aluminum, with one side of the setup left open for access. The experiment is constructed on
top of the bottom sheet, which lays separated from the metal surface of the optical table by
an insulating layer. All electrical signals which enter the Faraday cage are first filtered at the
outer surface. The motivation for constructing the cage was to reduce electrical noise which
had previously been resulting in ion motional heating, particularly in the direction normal
to the trap surface. This had prevented sideband cooling in this direction. The source(s)
of the noise had proven difficult to identify. The relationship between electrical noise and
trapped-ion motional heating, as well as evaluation of the performance of the Faraday cage,
are considered in Chapter 5. In short, ion motional heating is caused by electrical noise whose
frequency is resonant with the ion motion, which is in the hundreds of kilohertz to megahertz
regime. This section describes the design of the Faraday cage, whose main function is to
filter electric field noise at ion motional frequencies. Much of the design and construction of
the Faraday cage is credited to graduate student Ryan Tollefsen and postdoc Neha Yadav.
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4.3.1 General philosophy

The Faraday cage is intended to both prevent noisy radiation and to filter intentionally
incoming electrical signals. A few goals of the design of the Faraday cage for minimizing
noise as much as possible are as follows:

• All electrical signals which enter the Faraday cage are filtered at the entrance, with the
exterior of the cage as the ground reference for the filters. This allows for the exterior
surface of the cage to conduct away noisy currents while shielding the interior surface
from the noise.

• To prevent ground loops, there is only a single reference for AC power, which in turn
provides the earth reference for the entire system within the Faraday cage.

• The Faraday cage and the components inside of it are isolated from all other electrical
systems, especially the pulser, the optical table, and the wall ground aside from the
single reference point.

4.3.2 Electrical signals

All electrical signals which are used for the experiment but which are generated outside of
the Faraday cage are low-pass filtered at its external surface. These include the voltages for
the DC electrodes, other DC signals, and 60 Hz AC wall power.

Trap DC electrode voltages

To allow for ion rotation, discussed in Chapter 6, AC voltages at hundreds of kilohertz must
be allowed to be applied to the trap DC electrodes while filtering as much as possible at
motional frequencies (& 1 MHz). Furthermore, because voltages applied directly to the trap
electrodes are those which are in the most danger of causing ion heating, they are additionally
filtered at the entrance of the vacuum chamber to eliminate noise as downstream in the
signals’ paths as possible. The design of a filter for these signals is constrained by a 10 nF
capacitor to ground for each DC electrode inside the vacuum chamber.

Figure 4.7 shows the filter used for the signals to the DC electrodes, which originate from
the rotation circuit. At the entrance of the cage, they are filtered by a 4-stage cascaded low-
pass filter. Inside the cage, at the entrance of the vacuum chamber, there is an additional low-
pass filter consisting of the internal 10 nF capacitor and an external resistor. The resulting
filter function is shown in Fig. 4.8. The total filtering inside the chamber becomes higher
order starting at about 1 MHz due to the cascaded filter outside the cage. Inside the Faraday
cage but outside the vacuum chamber, there is still > 20 dB filtering to minimize noise inside
the Faraday cage while still ensuring that the filter at the chamber is able to eliminate any
noise which may have originated inside the cage. The filtering at frequencies within the
regime intended to be used for ion rotation is between 10 and 20 dB, which we find is little
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Figure 4.7: Schematic of the electrical signals used in the experiment with respect to the
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enough to still allow for applying voltages for ion rotation. Above 1 MHz, the filters provide
> 30 dB suppression.

The low-pass filters do not use precision capacitors or resistors, so there may be some
concern about whether the filtering of the eight DC electrode channels is the same. The
quality of the rotational potential created by the rotation circuit can be compromised if not.
The actual variation of the total capacitance of the filters across the eight channels is only
0.6%, and the variation of the resistances is within 0.2%. Furthermore, measurements of
the actual attenuation due to each channel’s respective filter at 200 kHz show that there
is no correlation across channels between attenuation factor and capacitance for the filters
external to the cage, suggesting that the small variation which is present does not limit the
uniformity of the channels’ attenuation.

Other DC signals

A few signals which must enter the cage but are not used directly for trapping include the
power for the PMT, the oven, and the control for the PI laser shutter. These are passed
through Schaffner EMC FN2010N1-6-06 EMI filters, which provide > 50 dB filtering in the
range 1− 10 MHz.

AC power

To prevent ground loops as much as possible, all instruments which are inside the Faraday
cage, require AC power, and whose grounds connect to the vacuum chamber or the trap chip
share a single AC power strip. The power cable for this is passed through the same type
of EMI filter as those for the other DC signals. This provides the single ground reference
for the entire Faraday cage system via the connection of the shielding of the EMI filter to
the outside of the cage, to which the ground of the input power line also connects. The RF
generator and ion pump receive power in this way.

PMT signal

The PMT which reads photons emitted by the ions is inside of the Faraday cage. It sends
signals to the pulser with pulses on the nanosecond timescale, and thus cannot be easily
filtered. Instead, it is shielded from the rest of the Faraday cage by a metal snakeskin
shielding wrapping around the signal line which is connected to the interior of the cage.
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Chapter 5

Measuring and mitigating noise

Over the course of maintaining operational conditions for this experiment, much time was
spent attempting to lower the heating rate of the ion motion in the vertical direction, i.e.
normal to the trap surface plane. This heating rate had been higher than the cooling rate
afforded by sideband cooling, thus precluding cooling of the vertical motion to its ground
state. This in turn prevented clean diagnostics of and coherent operations with rotational
motion, discussed in Chapter 6. Construction of the Faraday cage ultimately solved this
problem. This solution was effective enough to be successfully implemented without a true
diagnosis of the origin of the heating problem. Nevertheless, this chapter discusses some
of the techniques used in attempting to diagnose the problem prior to the Faraday cage.
Measurements of the cage’s performance are also presented.

5.1 Physics of trapped-ion motional heating

While trapped ions’ charge enables the trapping mechanism, it also makes them susceptible
to unwanted electric fields. In particular, it is often important in experiments for the motion
of trapped ions to be in a well-defined state. Uncontrolled electric fields can couple to the
motion and thus present a problem in trapped-ion experiments.

To show the effect of electric field noise on trapped ion motion, consider a single trapped
ion. It will suffice to consider a single direction of motion rj ∈ {x, y, z} so that the Hamilto-

nian of the ion’s motion in that direction is H0 = ~ωj(a†jaj+ 1
2
). The unwanted component of

the electric field can be written in terms of an electric potential Φ(r, t). The physical origin
of this field is always much further away from the ion than the distance scale of its motion,
so the field changes on a length scale much larger than that of the ion’s motion. This allows
the potential to be expanded into multipoles as

Φ(r, t) = Φ(0, t)− r · E(0, t)− 1

2

∑
j,j′

rjrj′
∂Ej
∂rj′

(0, t) + ... (5.1)
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where E = −∇Φ. The origin is set at the center of the ion’s motional potential. The
three terms shown are a spatially constant potential (which does not affect the motion), the
electric field, and the gradient of the electric field. Since the magnitude of these terms falls
off as long as the multipole expansion holds, the electric field term dominates. For a single
ion moving in the rj direction, the Hamiltonian for interaction with the electric field is

HE(t) = eΦ(rj, t) = −erjEj(t) = −e
√

~
2mωj

(aj + a†j)Ej(t) = −µj(aj + a†j)Ej(t). (5.2)

for a singly positively charged ion with charge e, where Ej(t) = Ej(0, t), the electric field at
the origin where the ion resides.

µj = e

√
~

2mωj
(5.3)

is the ion’s dipole moment for motion in the j-direction. The total Hamiltonian is H(t) =
H0 +H(t). Transforming into the interaction picture with respect to H0,

HI = −µj
(
aje

iωjt + a†je
−iωjt

)
Ej(t). (5.4)

The creation and annihilation operators will induce transitions between Fock states of the
motion. A noisy electric field will be stochastic, so that the total effect is an incoherent
average over many realizations of Ej(t). This final result is a tendency towards a thermal
distribution, with the average Fock state occupation n̄ increasing linearly at a rate Γh,
known as the heating rate. One way to compute this is to suppose the system begins in the
ground state |n = 0〉, and compute the probability of transitioning to state |n = 1〉 within a
small time window ∆t. Following Ref. [32], from the Schrödinger equation, the probability
amplitude of the state |1〉 evolves as

ċ1 =
1

i~
〈1|HI |0〉 = i

µj
~
Ej(t)e

−iωjt. (5.5)

The transition probability after time ∆t over meany realizations is

P1(∆t) =
〈
|c1(∆t)|2

〉
=

〈∣∣∣∣∫ ∆t

0

ċ1(t)dt

∣∣∣∣2
〉

=
µ2
j

~2

〈∣∣∣∣∫ ∆t

0

Ej(t)e
−iωjtdt

∣∣∣∣2
〉
. (5.6)

It can be shown that this is equivalent to

P1(∆t) =
µ2
j

2~2
∆t

∫ ∞
−∞

dτ 2 〈Ej(t)Ej(t+ τ)〉 e−iωjt (5.7)

under the following assumptions:

• The correlation time of the electric field is much shorter than the integration time ∆t.
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• The integration time ∆t is much longer than the oscillation period 2π/ωj.

• The electric field is weak enough so that the transition rate is much smaller than the
harmonic oscillation rate ωj.

The integral in (5.7) is the Fourier transform of the autocorrelation function of the electric
field, at frequency ωj, and is precisely equal to the power spectral density of the electric field
in the j-direction, SEj(ωj). The heating rate is thus

Γh =
P1(∆t)

∆t
=

µ2
j

2~2
SEj(ωj) =

e2

4~mωj
SEj(ωj). (5.8)

Under heating, the mean Fock state occupation n̄ of the mode being considered increases at
the rate Γh: ˙̄n = Γh.

Because this mechanism is a resonant effect, the heating rate is dependent only on the
spectral density of electric field noise at precisely the motional frequency. In an intuitive
picture, we may think of motional heating as occurring when an unwanted electric field
resonantly excites the motion, but does so with a random phase so that the process is
incoherent.

5.1.1 Heating of differential modes of motion

For multiple ions in a crystal, the electric-field term contribution of the expansion (5.1)
vanishes for modes of motion other than the center-of-mass mode. The heating rate is
then instead dominated by the next nonvanishing term, which in the simplest case is the
electric-field gradient. Here, rather than the heating rate being proportional to a dipole
moment squared times the power spectral density of the electric field, it is proportional to a
quadrupole moment squared times the power spectral density of the electric field gradient:

Γh ∝ Q2
j S∇E(ωj). (5.9)

Equation (5.3) shows that for center-of-mass heating, the relevant length scale for the dipole
moment is the size of the motional ground-state wavepacket. For differential mode heating
of a typical vibrational ion crystal, the two length scales for the quadrupole moment are the
ground state wavepacket size and the ion-ion distance 2r, so that Q ∼ µr. Meanwhile, the
magnitude of the electric field gradient is roughly that of the electric field divided by the ion-
surface distance h, so its spectral density is the square of this relationship: S∇E ∼ h−2SE.
Therefore, the heating rate for a differential mode is reduced as compared to that of a
comparable center-of-mass mode by (r/h)2, the ratio of the ion-ion distance to the ion-
surface distance. This ratio is typically 10−2 − 10−1, so that differential modes tend to heat
at rates 102 − 104 times slower than center-of-mass modes.

Rotational ion crystal motion is also a differential mode of motion, insensitive to electric
fields but sensitive to their gradients. The nature of this interaction differs in some ways
from vibrational motion, however; see Sec. 7.3.
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Figure 5.1: Heating rate measurement of the z-direction using a single ion at mode frequency
ωz = 2π×1.96 MHz. For each wait time, a Rabi oscillation on the carrier is measured and fit
for n̄. The heating rate is quantified as the number of motional quanta added to the mode
per millisecond (q/ms).

5.2 Measuring heating rates

To measure the heating rate, we measure the average Fock state occupation n̄ as a function
of time in between cooling and measurement. The slope of n̄ versus time is the heating rate.
We employ two methods to measure n̄, the Rabi method and the sideband method. Under
typical experimental parameters, the Rabi method is most appropriate for n̄ ranging from
1 to 1000, and the sideband method is most appropriate for n̄ < 1. For n̄ & 1000, there is
so little motional coherence that laser-based measurements are of little use, and alternative
thermometry methods are required.

5.2.1 Rabi method

Using the Rabi method, we infer the ion’s motional temperature from Rabi oscillations
[33]. As seen in Fig. 2.4, the form of Rabi oscillations is dictated by the temperature. The
carrier transition is most often used, which is typically most appropriate for values of n̄
between 3 and 1000. If n̄ . 3, the carrier oscillations decay slowly, and using a sideband
instead may provide some greater discrimination between possible values of n̄. We fit to a
function of the form (2.38) parameterized by n̄ through (2.37). For higher heating rates, it
is usually appropriate to begin at a Doppler-cooled temperature and use the Rabi method
for measurements. Figure 5.1 shows a sample heating rate measured using the Rabi method.
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5.2.2 Sideband ratio method

When n̄ is small enough, . 1, a direct comparison of red and blue sideband heights for a given
pulse duration yields the most information about the temperature. It can be shown that if
the motional state is thermal, then the ratio between the red and blue sideband heights is
n̄/(n̄ + 1) [25]. However it should be noted that the motional distribution after sideband
cooling is in fact typically not thermal, and the sideband ratio method can systematically
underestimate n̄ [34], and in turn underestimate the heating rate. The sideband ratio method
is most appropriate for low heating rates because it is highly sensitive to small changes in n̄
if one initially sideband cools.

5.3 Origins of electric field noise in trapped-ion

experiments

An ion trapped within a surface Paul trap is typically 10s to hundreds of micrometers away
from the trap surface, and significantly further away from any other object. The dominant
source of electric field noise at the location of a trapped ion crystal is thus almost always
voltage fluctuations on the surface of the trap. The physical origin of these fluctuations can
be broken into two broad categories: surface noise and technical noise.

5.3.1 Surface noise

Surface noise refers to voltage fluctuations arising from physical processes due to the trap
surface being a material at a finite temperature with some composition, morphology, and
possibly defects and contamination. Surface noise is thus related to the properties of the
surface. In many trapped-ion experiments, the magnitude of surface noise is high enough
to be a limiting factor in their respective figures of merit, such as two-qubit gate fidelities
[27, 35]. The physical origins of surface noise in trapped-ion experiments is unknown, and is
several orders of magnitude higher than what would be expected from basic considerations
such as blackbody radiation and Johnson noise [32, 36]. For this reason, motional heating
due to surface noise is sometimes referred to as “anomalous motional heating.”

5.3.2 Technical noise

Technical noise refers to electric field noise due to voltage fluctuations not related to the trap
surface. These most frequently are small stray voltages unintentionally applied to the trap
surface via channels which are intended to apply voltages related to trapping, such as the RF
confining voltages or voltages for stray field compensation. The consequences of technical
noise differ from those of surface noise in a few key ways:

• Technical voltage noise is fully spatially correlated across the entire electrode experi-
encing the noisy voltage. Surface noise, on the other hand, may have smaller spatial
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correlations or practically none at all. This can give technical electric field noise a
preferred direction with respect to the trap surface.

• The power spectral density of technical noise is often complex and inconsistent over
time because it arises from uncontrolled sources. Surface noise, on the other hand, often
follows a smooth power law in the spectral density as a function of noise frequency.

5.4 Relating technical noise spectrum measurements

to the heating rate

If ion motional heating is limited by technical noise, then reducing it amounts to identifying
and removing the source of the noise, weakening its effect, or making the system insensitive
to the noise. This typically involves isolating or removing electrical devices from the system,
or changing grounding connections to remove or redirect noisy currents. Because the goal
of lowering electric-field noise is to lower the motional heating rate, the heating rate itself
is the ultimate figure of merit. Such measurements can be slow however, taking at least
several minutes to estimate a heating rate at a single motional frequency, making it difficult
to iterate between electrical configurations. An alternative method is to use a spectrum
analyzer measurement as a proxy. This directly yields a power spectrum of voltage between
two reference points. If we can estimate a heating rate using this information, then spectrum
analyzer measurements can provide a useful benchmark as a proxy measurement. To do
this, we must estimate the electric field spectral density at the location of the ion from the
spectrum analyzer measurement, from which we can estimate the heating rate using (5.8).

5.4.1 Converting measured noise power to voltage spectral
density

A spectrum analyzer will typically provide a measurement in terms of noise power, in dBm,
as a function of frequency. To estimate noise levels, however, we need to know the spec-
tral density of the noise. The measured power is the spectral density integrated over fre-
quency window, typically referred to as the resolution bandwidth. The spectral density
can thus be estimated by dividing the measured power by the resolution bandwidth. This
is done on a log scale for measurements in dB. For example, a measured noise power of
−90 dBm using a 30 kHz resolution bandwidth corresponds to an average spectral density
of −90 − 10 log10(30 × 103) = −135 dBm/Hz over the integration window. This is equiv-
alent to 1 mW/Hz ×10−135/10 = 3.2 × 10−17 W/Hz in absolute power. We further convert
this to a voltage spectral density using the known impedance of the spectrum analyzer:
3.2× 10−17 W/Hz× 50 Ω = 1.6× 10−15 V2/Hz.
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Figure 5.2: Examples of pairs of electrodes which may experience a potential difference, and
a qualitative representation of the electric field produced.

5.4.2 Converting voltage spectral density to electric field
spectral density

Converting voltage to electric field is a matter of electrostatics and geometry. The two
reference points being measured will correspond to electrodes on the trap, and given the
geometry, one can in principle solve the corresponding electrostatics problem to determine
how a given potential difference between the two electrodes translates into an electric field.
It sometimes suffices to roughly estimate the appropriate length scale d such that potential
difference ∆V gives an electric field of magnitude E: E = ∆V/d. As a reference it is useful
to keep in mind that two parallel infinite planar surfaces separated by a distance d will have
a corresponding length scale equal to exactly d, and any other geometry will be less efficient
and thus have a larger such length scale. Continuing the previous example, if the appropriate
length scale is 1 cm, then the electric field spectral density is 1.6× 10−15 V2/Hz/d2 = 1.6×
10−11(V/m)2/Hz.

5.4.3 Choosing reference points for measurement

Equation (5.8) can be used to convert an electric field spectral density into a heating rate. If
SE = 1.6×10−11(V/m)2/Hz at a frequency of 1 MHz, then from (5.8), a single 40Ca+ ion will
be heated at a rate of 2.3 quanta/ms. In general, the total electric field seen by the ion is the
sum of the contributions from all pairs of electrodes. It is therefore useful to estimate which



CHAPTER 5. MEASURING AND MITIGATING NOISE 83

pairs are most likely to contribute to electric field noise to inform where to make spectrum
analyzer measurements.

In our case, prior to construction of the Faraday cage, heating rates in the vertical
direction were measured to be consistently at least several quanta/ms, while those in the
horizontal direction were consistently below 0.05 q/ms. This indicates that the geometry of
the technical noise was such that the noisy fields were primarily in the direction normal to
the trap surface.

Figure 5.2 shows a few different example pairs of electrodes of the ring trap, and the
electric fields which arise from a potential difference between them. The geometry of the
electrode pair being considered influences both the direction and the magnitude of the field
produced. For the purposes of these considerations, the vacuum chamber itself is able to act
as an electrode. For example, a potential difference between one of the DC electrodes and
the grounded RF electrodes would produce a tilted electric field (b). A potential difference
between the grounded RF electrodes and the surrounding ground plane, on the other hand,
has cylindrical symmetry, so that the electric field points entirely in the vertical direction (c).
Spatially correlated noise on all eight DC electrodes with respect to the vacuum chamber
also yields the right symmetry for a vertical electric field, but because all of these electrodes
are further from the ion, the field is smaller for a given potential difference (d). The first
and third ring RF electrodes are shorted to each other inside of the chamber, so they share
the same potential.

In our spectrum analyzer measurements, we chose to measure two pairs of points: the
surface of the chamber and the ground pin of the DC voltage cable (which connects to
the ground plane surrounding the trap), and the surface of the chamber and the grounded
RF electrodes (which also connects to the ground plane). It was suspected that the center
electrode in particular was the most likely to contribute to the measured noise, as it the
closest electrode to the ions, and also has the right cylindrically symmetric geometry to
produce vertical fields.

5.4.4 Comparing to heating rates

Figure 5.3(a) shows spectrum analyzer measurements taken between two different reference
points. Each shows a range of noise powers, showing the minimum and maximum of several
different measurements spanning several days. Each measurement is with the same grounding
configuration, and was taken before construction of the Faraday cage.

To compare the measured noise spectra with heating rates, we convert the measured
power to voltage spectral density. Furthermore, because the heating rate is also inversely
proportional to frequency from (5.8), we divide the result by frequency. In other words, for
a given noise spectral density, the heating rate will be lower at higher frequency because
the ion is more tightly confined and thus has a smaller dipole moment to interact with the
noise. The result is now directly proportional to the heating rate that would result from
the noise measured. Whether this relationship actually holds in reality is contingent on the
heating rate being limited by the measured noise, as opposed to by noise from some other
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Figure 5.3: (a) Raw measured noise spectra between two pairs of reference points, shown as
a range of measured noise powers over several different measurements. These measurements
were taken with a spectrum analyzer using a resolution bandwidth of 30 kHz. (b) The
same data converted to voltage spectral density and scaled by frequency, compared with
measurements of vertical heating rates. The horizontal line at 1 q/ms is a rough benchmark
for the heating rate threshold needed to allow for sideband cooling.

unmeasured pair of reference points. Figure 5.3(b) plots this scaled noise on one axis, and
measured vertical heating rates on the other. The heating rates were measured within the
time interval of the spectrum analyzer measurements. We do not attempt to convert voltage
spectral density to electric field spectral density here, but the noise and heating rate scales
are set proportionally to each other. We find in this case some agreement between the scaled
noise level and the heating rates, contributing evidence that the heating rates may be limited
by noise across the measured points. It should be noted however that the measured noise
spectra have a large variation, greater than 5 dB (a factor of 3) over much of the spectrum,
making it easier to artificially induce agreement between noise spectrum and heating rate
measurements.
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Figure 5.4: Left: Photo of a subset of the grounding connections made during one attempt
to reduce the noise spectrum. Right: The measured noise spectrum before and after adding
the connections shown on the left. The measurement was made between the chamber surface
and the DC ground pin, using a resolution bandwidth of 30 kHz.

5.5 Minimizing technical noise

Prior to construction of the Faraday cage, we attempted to lower the measured noise spectra
by changing grounding configurations. This was successful in lowering the noise spectrum
somewhat, but was not successful in lowering vertical heating rates reliably and consistently
below the threshold required for sideband cooling of the vertical motion. This is shown
in Fig. 5.4. Nonetheless, we list some of the general strategies used in choosing grounding
configurations which were likely to lower the noise spectrum. The list is not comprehensive,
nor even self-consistent.

• Use as few independent connections to wall power ground as possible. Ideally, only a
single reference to wall ground is made. All other devices which produce voltages which
will ultimately go to the trap should be isolated from the wall ground and connected
instead directly to each other.

• Isolate the system of all devices, active or passive, which contribute to trap electrode
voltages from all other electrical systems. Within this system, ideally all grounded
points are connected to each other at a single point of intersection, a “star ground”,
to prevent loops of current (“ground loops”).

• Spectrum analyzer measurements should be made with the spectrum analyzer isolated
from wall ground, and instead referenced to some point on the system being measured.

• For making electrical connections between points, large contact surface areas are pre-
ferred over high-conductivity material; e.g. snakeskin tubing is preferred over a thin
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Figure 5.5: Spectrum analyzer measurements of radiation pickup using a loop of wire, inside
vs. immediately outside the Faraday cage.

copper wire. One can measure a noise spectrum just across the connecting cable to
test its efficacy at making electrical connections at the frequencies of interest.

• For identifying a single source of noise, it is best to disconnect all devices and reconnect
one at a time.

• After using carefully establishing a starting point for connection with all necessary
devices in place, one may still find that additional grounding connections between
devices helps lower the noise spectrum.

Our best efforts of finding an optimal grounding configuration lowered the noise spectrum
by approximately 1 order of magnitude in the frequency range of interest, about 2− 5 MHz.

5.6 Performance of the Faraday cage

We benchmark the performance of the Faraday cage in three ways: reduction of radiation,
reduction of the noise spectrum as measured between the chamber surface and RF ground
pin, and reduction of the vertical heating rate. The latter is the most important.

Measurements of the radiation pickup are presented in Fig. 5.5. The spectrum analyzer
was connected to a loop of copper wire about 10 cm in diameter, and placed immediately
outside the Faraday cage, and then again inside the Faraday cage. The measured radiation
pickup was reduced by about 1 order of magnitude inside the cage at 3 MHz and above.

Voltage noise spectra measured directly on the system are presented together with mea-
surements of the vertical heating rate in Fig. 5.6. The two noise spectra shown are with
and without the Faraday cage, measured at across the same two points: the surface of the
chamber, and the RF pin which connects to the center electrode. In reality, many such noise
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Figure 5.6: Voltage noise spectra and vertical heating rates, comparing before and after
installation of the Faraday cage. Noise spectra are measured between the chamber surface
and pin connecting to the center electrode. The blue trace is the lowest measured noise
spectrum prior to installation of the Faraday cage, and the red trace is the noise spectrum
after its installation. Points with error bars are vertical heating rate measurements. Heating
rates before the Faraday cage (blue circles) are an aggregate of many different grounding
configurations. The grey horizontal line is at 1 q/ms heating rate as a reference point. The
two y-axes are scaled to be proportional to each other, but their ratio is chosen arbitrarily.

spectra were measured prior to the installation of the Faraday cage; the one shown is the
one with the lowest measured amplitude of all grounding configurations. The cage appears
to improve the noise amplitude by one order of magnitude at 3 MHz and above, except for
a small range near 4 MHz.

The heating rates shown in Fig. 5.6 labelled “Without Faraday cage” are an aggregate
of measurements made with many grounding configurations. Prior to the Faraday cage,
heating rates varied significantly and were often larger than 1 q/ms. With the Faraday cage,
the vertical heating rate was lowered by 1−2 orders of magnitude, and was consistently below
0.4 q/ms, low enough to reliably allow for sideband cooling. We also see that the heating
rate does not appear to follow a simple power law scaling as a function of frequency, and thus
is likely still limited by technical noise. Finally, we see generally poor agreement in this case
between the noise spectra (scaled by frequency) and the heating rates. These measurements
were taken with one side of the Faraday cage open, and have demonstrated this configuration
to be sufficient. We have therefore decided to not fully enclose the Faraday cage, which could
risk complications such as trapping heat emitted by the enclosed electronics.
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Chapter 6

Creating superpositions of rotational
states

For many quantum systems, all features which make them interesting from an experimental
point of view can be linked to the prospect of using them to create interesting non-classical
states. In the case of trapped ions, this applies not only to the internal electronic degree
of freedom, but also to the external motional degree of freedom of the Coulomb crystal
as a whole. Several decades ago, the creation of highly non-classical states of trapped-ion
harmonic motion was in itself a high-profile research endeavour [37, 38], and interest in this
pursuit has persisted into recent years [39, 40].

In this work, we create non-classical superposition states of our quantum rotor. In par-
ticular, we create superpositions of two different angular momenta, i.e. states of the form
|`〉 + |`+ ∆`〉. This chapter details the experimental requirements and procedures used for
doing so, and presents measurements of the results.

6.1 Requirements for coherent operations

Coherent manipulation of trapped-ion vibrational motion is typically done by addressing
motional sidebands of a coherent electronic transition. Classically, we may think of these
sidebands as arising from modulation of the laser (or microwave) field in this ion’s frame of
reference due to its motion. Quantum mechanically, we may identify the sidebands as being
allowed transitions which conserve energy. A vibrational mode with frequency ωj has a
single transition frequency between all neighboring vibrational states, ωj itself. All motional
sidebands are therefore at integer multiples of ωj: (Enj+∆nj − Enj)/~ = ∆njωj. A valuable
feature of this transition spectrum is that transition orders ∆nj are resolved, as they are
separated from one another by ωj, which is typically of order MHz.

In the case of a rotational mode, as discussed in Chapter 3, one similarly finds sidebands
at the motional transition frequencies. However, unlike the harmonic oscillator, the rotor’s
energy eigenspectrum is nonlinear and therefore features a significantly more complex transi-
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tion spectrum. The eigenenergies are E` = ~ωr`2 (3.20), and thus the transition frequencies
are

E`+∆` − E`
~

= ωr(2`∆`+ ∆`2), . (6.1)

where ωr is the rotational constant ~/2I with I being the moment of inertia. Suppose the
rotor is in a thermal state. Since the ground state is ` = 0, a thermal state will have
occupation in the vicinity of ` = 0. Such a state will have population at values of ` which
are small. We find two problems with addressing sidebands in this case:

• The transition frequencies are small, near ωr which is of order 10 Hz.

• Transitions of different orders ∆` have significant overlap with each other.

Both of these effects make it prohibitively difficult to address transitions of a well-defined
order ∆`.

A solution to this problem is to instead prepare the rotor into a rapidly rotating state,
with a mean angular momentum ¯̀ which is large compared to 1 and compared to its width
σ`. In this case, when considering transition orders which are small (in practice, ∆` = 6 or
smaller), then `� ∆`, so that the transition frequencies approximately obey

E`+∆` − E`
~

≈ 2ωr`∆`. (6.2)

Here, transition orders ∆` are separated from each other by 2ωr`, which is equal to the rota-
tion frequency corresponding to angular momentum ~`. This matches a classical expectation
of finding modulation sidebands at integer multiples of the rotation frequency. To create re-
solved rotational sidebands, we therefore prepare the rotor into a rapidly rotating state to
separate the ∆` sidebands from each other. To avoid strong centrifugal effects, this rotation
frequency should also be chosen such that it is not too close to the stretch mode frequency
(see Sec. 3.5), which is typically a few MHz. We therefore choose rotation frequencies of
100− 300 kHz. This corresponds to angular momenta on the order of 103 − 104 ~.

In practice, we do not prepare an angular momentum eigenstate, i.e. a state with well-
defined rotation frequency. Instead, the state always has some spread in angular momentum.
This finite angular momentum width has the effect of broadening the ∆` rotational transition
sidebands. If the width of the rotational state in angular momentum space is ~σ`, then the
∆`-order sideband will span in frequency space from 2ωr(`− σ`)∆` to 2ωr(`+ σ`)∆`, giving
it a linewidth of

γ∆` = 4ωrσ`∆`. (6.3)

In total, to produce resolved rotational sidebands, have three requirements:

• The mean rotation frequency ωrot
¯̀ = 2ωr ¯̀ must be small compared to the stretch mode

frequency ωstretch to avoid strong centrifugal effects.

• The mean rotation frequency must be larger than the Rabi frequency of the neighboring
sidebands Ω∆`±1 being addressed to avoid off-resonant coupling.
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• The Rabi frequency of the sideband being addressed Ω∆` must be larger than its
linewidth 4ωrσ`∆`, so that the operations are coherent.

The Rabi frequencies Ω∆` are proportional to J∆`(|ζ|) (3.31b), where ζ is a dimensionless
parameter given by (3.26b). It will suffice here to assume that ζ is a modest value such that
the Rabi frequencies of the transition orders of interest are all of the same order, so that
Ω∆`±1 ∼ Ω∆`. Then we can summarize our requirements as follows:

ωstretch � ωrot � Ω∆` � γ∆`. (6.4)

In practice, the stretch mode frequency ωstretch is of order 1 MHz, the rotation frequency
ωrot

¯̀ = 2ωr ¯̀ is of order 100 kHz, the rotational sideband Rabi frequency Ω∆` is of order
10 kHz, and the sideband linewidth γ∆` = 4ωrσ`∆` is of order 1 kHz.

The rotational constant ωr is an important parameter in most measurements pertaining
to the ion rotor. Using two ions, it is calculated as ~/4mr2, where the radius r is always
inferred by measuring the horizontal secular trap frequency and using (3.21) to compute
r. If necessary, non-rigid corrections may be included according to either (3.65b) or (3.69)
as appropriate (see Sec. 3.5). Over the course of the work done in this thesis, we have
used rotor radii spanning between 2.1 µm and 3.2 µm, corresponding to rotational constants
ranging from 2π × 14 Hz to 2π × 6 Hz.

6.2 Rotational state preparation

All experimental work related to rotational motion in this thesis is done with a two-ion
crystal. The technique used to produce a rapidly rotating state of the rotational mode of
the two-ion crystal can be summarized by the following procedure:

• The in-plane rotational symmetry is broken by the application of a “pinning” quadrupole
potential via the DC compensation electrodes of the trap, aligning the ion crystal along
a chosen in-plane axis.

• Electronic state preparation and Doppler cooling are performed, after which the hor-
izontal rocking mode, which later becomes the rotational mode, is sideband cooled.
The vertical COM and rocking modes are also sideband cooled, though this is for
the purposes of helping to later coherently address the rotational motion rather than
preparing it (see Sec. 6.3).

• The ion crystal is spun up to a chosen rotation frequency by rotating the orientation of
the pinning potential with a constant acceleration until the desired rotation frequency
is reached.

• The amplitude of the pinning potential is lowered linearly until it reaches zero, while the
rotation frequency is kept constant. This restores the in-plane rotational symmetry
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Figure 6.1: Schematic of the spin-up-and-release procedure used for rotational state prepa-
ration. (a) The voltages used on the two channels of the AWG to generate the pinning
potential as a function of time, defined in (6.8). (b) Pinning strength and rotation frequency
of the pinning potential as a function of time. (c) The potential of the two ions in the
well at each stage. Arrows indicate rotation. (d) Population of the rotor’s state in angular
momentum space at the beginning of each stage.

allowing the rotor to freely rotate. The rotor continues to rotate at the previously
chosen rotation frequency due to conservation of angular momentum.

This procedure is illustrated in Fig. 6.1. Most importantly, Fig. 6.1(d) shows the angular
momentum space population of the rotor at the beginning of each stage of the procedure.
The ions begin strongly pinned and stationary, and thus have a large spread of angular
momentum centered at zero. Sideband cooling of the horizontal rocking motion narrows the
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distribution. Then, spin-up displaces the distribution to some large mean angular momentum
¯̀. Finally, release allows the rotor wavefunction to spread in position space and thus further
narrow in angular momentum space. The angular momentum wavefunction then remains
stationary. The angular momentum state at the end is centered at ¯̀' ωrot/2ωr ∼ 103−104 ~
with a spread of ~σ` ∼ 101 − 102 ~.

We consider rotational state preparation to be successful if the following two conditions
are satisfied:

1. The mean rotational frequency of the final angular momentum state ωrot is near the
target rotation frequency, e.g. within a few kHz.

2. The spread of the final angular momentum state σ` is as small as possible. For ad-
dressing the ∆`-order sideband, its linewidth 4ωrσ`∆` must be small compared to the
Rabi frequency, which itself must be small compared to ωrot (6.4).

In practice, successful rotational state preparation is sensitively dependent on the choice
of parameters in the spin-up-and-release procedure. In particular, there is a strong depen-
dence of the choice of spin-up time and release time, which we choose to be approximately
50 − 100 µs and 500 − 1000 µs, respectively. Numerical simulations of the dynamics of the
procedure can provide some insight into the observed results, though we find there remain
unexplained phenomena. No general formulation for predicting successful rotational state
preparation parameters a priori has as of yet been developed.

The following subsections discuss how the pinning potential is provided and how parame-
ters for the spin-up-and-release procedure are chosen to maximize the likelihood of successful
rotational state preparation.

6.2.1 Generating the pinning potential

The pinning quadrupole potential is produced by applying voltages to the DC compensation
electrodes of the trap as shown in Fig. 6.2. This pattern of voltages has two free parameters,
the amplitude Vpin and the phase ϕpin. The resulting pinning quadrupole potential takes the
form

Φpin(x, y) = Upin

[
y2 − x2

2
cos(2ϕpin)− xy sin(2ϕpin)

]
, (6.5)

where the quadrupole strength Upin is proportional to the voltage amplitude Vpin. (Note that
Φpin is a potential energy, not an electric potential.) Thus the orientation of the pinning
potential is set by ϕpin, and the amplitude is set by Vpin. It can be shown that the application
of the pinning potential results in two distinct secular trap frequencies in the plane given by

ω1,2 =

√
ω2
xy ±

Upin

m
, (6.6)

where ωxy is the isotropic in-plane secular trap frequency in the absence of the pinning
potential. (The two in-plane secular frequencies are referred to as ωx and ωy in Chapter 3,
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Figure 6.2: Voltages applied to the outer DC electrodes to produce the pinning quadrupole
potential. An example quadrupole field is shown in black lines, whose orientation corresponds
to ϕpin = π/4 or 5π/4.

but here we use ω1 and ω2 to emphasize that the pinning potential may orient the eigenmodes
arbitrarily.) Experimentally, the strength of the pinning is most readily characterized by the
frequency of the horizontal rocking mode, given by

ωhoriz rock = ωhr =
√
ω2

2 − ω2
1 =

√
2Upin

m
∝
√
Vpin. (6.7)

The proportionality is determined by the trap geometry. In practice we choose Vpin = 5 V
which gives ωhr = 2π × 280 kHz.

Creating the pinning potential requires four distinct voltages, ±Vpin cos(2ϕpin) and
±Vpin sin(2ϕpin). Since these come in two pairs of opposite sign, this may be achieved by
sourcing only two distinct voltages and inverting them where appropriate. The pinning
potential must also be dynamic in order to provide the spin-up-and-release sequence used
to prepare the rotor state. We therefore source the pinning voltages from a two-channel
arbitrary waveform generator, with the two channels a and b producing the voltages

V AWG
a (t) = Vpin(t) cos[2ϕpin(t)]

V AWG
b (t) = Vpin(t) sin[2ϕpin(t)].

(6.8)
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We pass these through the rotation circuit (Sec. 4.2.1) to apply them to the appropriate
electrodes, while still maintaining the DC offset necessary for stray static field compensation.
The spin-up-and-release procedure is implemented by choosing waveforms such that Vpin and
ϕpin vary with time as follows:

• For electronic state preparation and cooling, the ions are statically pinned at the max-
imum values of Vpin at an orientation which is convenient given the directions of the
cooling lasers.

• Spin-up is performed by linearly accelerating ϕpin until ϕ̇pin is equal to the target
rotation frequency ωtarget

rot .

• Release is performed by linearly lowering Vpin until it reaches zero, while ϕ̇pin is main-
tained at ωtarget

rot .

The functional form of these waveforms is schematically illustrated in Fig. 6.1(a).
In reality, due to the low-pass filtering of the DC electrode voltages, the pinning potential

weakens as the orientation is accelerated, even before the amplitude of the voltage from the
AWG is lowered.

6.2.2 Preparing the rotation frequency

As discussed above, the two important figures of merit for successful rotation preparation
are the mean rotation frequency and the angular momentum spread. Of these two, the
mean rotation frequency is the more reliably prepared to an acceptable value. However, we
still find that there is significant variation in the mean rotation frequency, which is often
roughly 5% of the target rotation frequency, e.g. 5 − 10 kHz variation when the target
rotation frequency is 150 kHz. In particular, a strong dependence on the spin-up time is
often observed. Figure 6.3 exemplifies this dependence. For target rotation frequencies of
100 kHz and 150 kHz, the actual prepared rotation frequency may differ from the target by
up to 5− 10 kHz in either direction.

Classical dynamics simulations

Numerical simulations can provide some insight into the spin-up-and-release process, and
we find that indeed some dependence of mean rotation frequency on spin-up time is to
be expected. Classical simulations are preferable over quantum mechanical simulations for
tracking the mean rotation frequency during the spin-up process, since the mean angular
momentum changes from 0 to at least 103 ~, thus requiring a prohibitively large Hilbert
space for faithful quantum simulations. However, as long as the acceleration of the pinning
potential is not too fast, the wavefunction remains near the bottom of the well during spin-
up, so that the dynamics of the mean rotation frequency follow the classical dynamics. This
has been confirmed with quantum simulations using mock parameters to allow for a smaller
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Figure 6.3: Actual rotation frequencies as a function of spin-up time for target rotation
frequencies of 100 kHz (a) and 150 kHz (b). The solid horizontal line indicates the tar-
get rotation frequency. In these measurements, the rotation frequency is inferred from the
frequency of Ramsey fringes (see Sec. 6.5). These indicate the detuning of the rotational
sideband from the laser pulse frequency, but do not indicate the sign. Thus for each mea-
surement there are two possible rotation frequencies which could give the same result. It is
assumed that the more likely of the two possibilities is always the one which is closest to the
target rotation frequency, which is marked in the solid blue markers, but for completeness
the other possible result is also plotted in open red markers.

Hilbert space. Quantitatively, the requirement to be satisfied is α/ω2
hr � 1, where α is

the rate of angular acceleration of the pinning potential. Given that for a linear spin-up,
α = ωtarget

rot /tspinup, this is equivalent to tspinup � ωtarget
rot /ω2

hr. For typical parameters, this
requirement is easily satisfied.

We take the orientation θ of the rotor as the only degree of freedom. The rotor radius
is assumed to be constant, though this is not strictly true experimentally: the radius is
a function of the smallest secular frequency via (3.21), which in turn is a function of the
pinning strength Upin via (6.6)1. The radius will thus change as Upin is lowered during release,
but this change is only approximately 1%. Along the circle of radius r in the xy-plane, the
pinning potential (6.5) is a double well with the form

Φpin(θ) = Upinr
2 sin2 (θ − ϕpin) = Φ0

pin sin2 (θ − ϕpin) . (6.9)

Note that, from (6.7), the horizontal rocking mode frequency may be directly related to the

1Here, ωx in (3.21) should be replaced by ω1, which is given by the smaller of (6.6).
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Figure 6.4: Simulated spin-up-and-release using classical dynamics for linear spin-up (left)
and sine-squared spin-up (right). In both cases, the spin-up phase lasts 70 µs, and the release
phase lasts 500 µs. The blue line shows the simulated trajectory of the rotor, and the black
line shows the rotation rate of the underlying potential.

amplitude of the pinning potential Φ0
pin by

ωhr =

√
2Φ0

pin

mr2
= 2

√
ωr

Φ0
pin

~
. (6.10)

The classical dynamics may thus be described by the Lagrangian

L(θ, θ̇, t) =
1

2
Iθ̇2 − Φ0

pin(t) sin2 [θ − ϕpin(t)] . (6.11)

Figure 6.4 shows a classical simulation of the spin-up-and-release process for typical exper-
imental parameters: 70 µs spin-up time, 500 µs release time, and 150 kHz target final rotation
frequency. The rotor begins at rest in one of the potential minima. Figure 6.4(a) shows a lin-
ear spin-up function, which is used in all experiments. Initially, the rotor oscillates within the
potential due to the sudden acceleration. These oscillations occur at the horizontal rocking
mode frequency ωhr = 278 kHz, and initially have an amplitude of α/ωhr = 2π×1.2 kHz from
the instantaneous rotation frequency of the potential. The oscillation amplitude then grows
gradually, possibly due to anharmonic contributions of the potential. The oscillations then
abruptly grow significantly after completion of spin-up. During release, the rotor becomes
allowed to oscillate with still greater amplitude as the potential becomes shallower. The
oscillations also correspondingly decrease in frequency as the rocking frequency is lowered.
The final rotation frequency at the completion of rotational state preparation is therefore
highly sensitive to the phase of these oscillations at the moment of completion. Replacing
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Figure 6.5: The release process in position space (shown in a rotating frame) and in angular
momentum space. Initially, the rotor is pinned and the wavepacket is localized in position
and spread in angular momentum. As the pinning potential is lowered, the position space
wavepacket spreads and the angular momentum space wavefunction narrows.

the spin-up process with a smoother sine-squared function (Fig. 6.4(b)) does not help to
eliminate this strong effect. The initial oscillations are nearly eliminated, but they begin
to appear as the spin-up acceleration slows, and still become significantly amplified at the
onset of release. These simulations do not account for weakened pinning during spin-up due
to filtering.

6.2.3 Minimizing the angular momentum spread

The spread in angular momentum is best modeled quantum mechanically. At the beginning
of the spin-up-and-release process, the initial state is inside a deep potential well. This local-
izes the wavepacket in position to 4 − 10× 10−3 radians, which thus has a large uncertainty
in momentum of 50 − 120 ~ when in the ground state of the horizontal rocking mode, and
larger if in an excited state. The spin-up process displaces the center of this wavepacket
〈Lz〉 from 0 to close to Iωtarget

rot , but does not affect the spread. The release process then
lowers the pinning potential, allowing the position-space wavepacket to spread more, which
in turn narrows the angular momentum space distribution, as desired. The angular momen-
tum spread after rotational state preparation is thus most directly affected by the release
process.

We find that the final angular momentum spread depends on four main factors:

• The initial state of the horizontal rocking mode. The colder the horizontal rocking
mode, the more localized it is in angular momentum to begin with, and the more
localized it is after spin-up-and-release. This is observed both in experiment and in
simulations.
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• The release time. This is related to the adiabaticity of the release process: In the
limit of a perfectly adiabatically release, an eigenstate of the initial Hamiltonian (e.g.
the ground state of the horizontal rocking mode) gets mapped onto an eigenstate of
the final Hamiltonian (i.e. an angular momentum eigenstate). A slower rate keeps
the release process in the adiabatic regime for longer, allowing the angular momentum
wavefunction to narrow more. This has been explored in simulations to inform the
choice of release time, but has not been explored thoroughly in experiment.

• Residual quadrupole fields which may remain uncompensated in the absence of an
intentionally applied pinning potential. We find experimentally that the angular mo-
mentum spread suffers if these are not compensated precisely. This dependence has
not been thoroughly studied in simulations.

• The spin-up time. This dependence is observed only experimentally, and remains
unexplained.

Effects of initial temperature and rate of release

The effects of both initial temperature and release rate may be modeled using quantum
mechanical simulations under the Hamiltonian

H(t) =
L2
z

2I
+ Φ0

pin(t) sin2 θ. (6.12)

Here, only the release process is modeled, and is done in a rotating frame. Despite the
empirical observation that the spin-up time affects the final angular momentum distribu-
tion, full quantum mechanical simulations which include the spin-up process do not indicate
any affect of spin-up on the angular momentum spread. It thus suffices in these idealized
simulations to model release only.

It may be noted that Hamiltonian used (6.12) ignores the rotation of the potential, but
this does not affect the dynamics of the release process. This is justified as follows: In the
lab frame, the Hamiltonian is

Hlabframe(t) =
L2
z

2I
+ Φ0

pin(t) sin2(θ − ωtarget
rot t). (6.13)

To transform into the rotating frame, we may apply the unitary U = e−iω
target
rot tLz/~, yielding

an effective Hamiltonian

Hrotframe(t) =
L2
z

2I
+ Φ0

pin(t) sin2(θ)− ωtarget
rot Lz. (6.14)

This differs from the Hamiltonian actually used (6.12) only by the term−ωtarget
rot Lz. This term

serves only to make the angular momentum state which matches the potential’s rotation,
` ≈ Iωtarget

rot /~, the new ground state. It otherwise does not qualitatively change the energy
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Figure 6.6: Final angular momentum spread as a function of initial rocking mode temper-
ature and release time, as determined from a collection of quantum mechanical simulations
of the release process. For these simulations, r = 3 µm, or equivalently, ωr = 2π × 7.0 Hz.

eigenspectrum. It therefore suffices to model the potential and the state as both not rotating
as in (6.12), which is preferable for simplicity.

The temperature of the horizontal rocking mode dictates the choice of initial state in
the simulation, and the release time determines the slope of the linear ramp of the pinning
strength Φ0

pin(t) from its initial value down to zero. Figure 6.6 shows the simulated angular
momentum spread as a function of initial rocking mode temperature and release time. We
see that sideband cooling the horizontal rocking mode lowers σ` by 1−2 orders of magnitude
over just Doppler cooling. This pronounced difference is also seen experimentally. The
horizontal rocking mode is always sideband cooled prior to rotational state preparation for
this reason. Once the initial state is as cold as it can be however, releasing for longer than
100’s of µs provides little added benefit.

We find in practice that the optimal angular momentum spread, when other factors
are optimized to the best of our ability, is approximately a factor of 2 greater than those
predicted in Fig. 6.6. We also find that release times longer than 1 ms result in a much larger
angular momentum spread, for unknown reasons.

Adiabaticity of release

We find from simulations which begin in the ground state of the rocking mode that the
release process may be well-approximated as an initially adiabatic narrowing of the angular
momentum distribution, followed by an abrupt transition after which the narrowing stops
nearly entirely once the adibaticity condition is violated. From the adiabatic theorem, the
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Figure 6.7: Eigenspectrum of the Hamiltonian (6.12) as a function of the potential height for
ωr = 2π× 7 Hz. The plot is zoomed in to energies which are much smaller than those which
are experimentally relevant in order to resolve the individual eigenenergies. Along the black
line, the x and y coordinates are equal. Above it, the eigenspectrum is approximately that of
a free rotor, and below it, it is approximately that of a harmonic oscillator. A system which
begins at large Φ0

pin in the ground state will follow the lowest energy curve adiabatically
as Φ0

pin is reduced until the energy gap becomes small enough to violate the adiabaticity
condition.

condition for adiabatic evolution is

ω̇hr
ωhr
� ωhr =⇒ 1

2

˙Φ0
pin

Φ0
pin

� ωhr. (6.15)

At the beginning of the release process, the system is in the ground state of the Hamiltonian
(6.12), which is approximately a harmonic oscillator. The energy gap is thus the horizontal
rocking mode frequency ωhr. As the potential height is lowered, this gap becomes smaller.
The energy gap is initially very large compared to its rate of change, but eventually the gap
becomes small enough that the adiabaticity condition is violated. The angular momentum
spread at the time of adiabaticity violation determines the final spread.

For a linear release, Φ0
pin(t) = Φ0

pin(t = 0) × (1 − t/trelease). Substituting this into the
condition (6.15), the release is adiabatic for times t which satisfy(

1− t

trelease

)3/2

� 1

2treleaseωhr(t = 0)
. (6.16)
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Figure 6.8: Time series of a numerical simulation of the release process for a 100 µs release
time, beginning from the ground state of the horizontal rocking mode, for ωr = 2π × 7 Hz.
The solid curve shows the angular momentum spread for an ideal adiabatic trajectory, given
by (6.18). Vertical lines show where the energy gap exceeds its relative rate of change (i.e.
the inequality (6.16)) by a factor of 10 (left) and where they are equal (right).

Linear release begins deeply in the adiabatic regime, with the left-hand side of (6.16) ex-
ceeding the right-hand side by more than 3 orders of magnitude. One may roughly estimate
that adiabaticity is violated when the energy gap exceeds the relative rate of change of the
Hamiltonian by less than one order of magnitude. For a 500 µs release time, this suggests
from (6.16) that the adiabaticity condition is violated when t = 0.97trelease, so that only the
final few microseconds are nonadiabatic. We thus expect the angular momentum spread here
to be determined by the angular momentum spread when Φ0

pin = 0.03Φ0
pin(t = 0), which for

ωr = 2π × 7 Hz is 17 ~. Extending the release time by an order of magnitude to 5 ms would
make the adiabaticity last until t = 0.993trelease, at which point the angular momentum
spread is expected to be 8.4 ~, only a factor of 2 smaller. This estimate somewhat agrees
with the simulations from Fig. 6.6, underestimating them by approximately a factor of 2.

As an example, Fig. 6.8 shows the time series result of one of the simulated releases shown
in Fig. 6.6: starting in the ground state and releasing for 100 µs. The dashed curve shows the
simulated angular momentum spread during the release process, while the solid curve shows
the angular momentum spread if the state were to follow a perfect adiabatic trajectory, i.e.
always remaining in the ground state. The simulated spread closely follows the adiabatic
trajectory up until the final few microseconds, where the adiabaticity condition is violated.
A perfectly adiabatic release would bring σ` down to 0, since at the end of release, the energy
eigenstates are exactly angular momentum eigenstates. However, the true process limits the
angular momentum spread σ` to 41 in this simulation. Maintaining adiabaticity all the way
down to the level where the energy gap is on the order of ωr using a linear ramp would
require a ramp time on the order of 10’s of days.

Such a dramatic jump from adiabatic to diabatic suggests that when releasing linearly,
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time is wasted at the beginning of the release process by releasing so slowly. It is possible
that there exists a wiser choice of release function. Using (6.15), one way to define such
a function is such that the ratio ˙ωhr/ω

2
hr remains approximately constant. Imposing this

condition results in the release function

Φ0
pin(t) =

Φ0
pin,i

(1 + ωhr,it)
2 . (6.17)

where Φpin,i and ωhr,i are the initial values of Φpin and ωhr at t = 0. Using this function, it
would take only approximately 10 ms for the energy gap to adiabatically go down to roughly
ωr. It should be noted however that most of the time is spent at very small potential heights
of under 1 kHz. If such shallow potentials are required, other limitations will become relevant.
One such limitation is the resolution of the AWG which generates the pinning potential. In
general, the ground state of the rotor in a quadrupole potential with height Φ0

pin has angular
momentum uncertainty

σ` =
1√
2

(
Φ0

pin/~
ωr

)1/4

. (6.18)

This is the absolute minimum angular momentum spread possible in the presence of a
quadrupole potential rotating along with the rotor (unless some other highly precise diabatic
process were to be employed). The AWG currently used for rotational state preparation has
a resolution of 16 bits, so that the minimum possible nonzero pinning voltage is can apply
is Φ0

pin = h × 15 kHz. This limits the angular momentum spread to 4 ~ before the pinning
voltage is lowered abruptly to zero. Additionally, any residual static quadrupole in the ab-
sence of an intentionally applied pinning potential will also inhibit narrowing of the angular
momentum distribution.

Effect of residual quadrupoles

The width of the angular momentum distribution after rotational state preparation is empir-
ically found to be very sensitive to the presence of static residual quadrupole fields. Compen-
sation of these fields is done by measuring the frequency of the horizontal rocking mode in
the absence of an applied pinning potential, and adjusting the compensating quadrupole val-
ues via the DC electrode voltage contributions from the DAC such that the mode frequency
is minimized. A typical minimally achievable rocking mode frequency is 20 kHz. It should
be noted therefore that the experiments carried out in this work are done in the presence of
an underlying quadrupole potential. However, referring back to Fig. 6.7, the Hamiltonian
is still approximately that of a free rotor as long as the rotational kinetic energy is large
compared to the residual potential height. In terms of the residual horizontal rocking mode
frequency ωhr,resid, this condition is equivalent to ω2

rot � ω2
hr,resid.
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Figure 6.9: Measured angular momentum spread as a function of spin-up time for 100 kHz
rotation (a) and 150 kHz rotation (b). Different datasets have been taken on different days.
Here, r = 2.2 µm, or equivalently, ωr = 2π × 13 Hz.

Effect of spin-up time

In practice, the final angular momentum spread is a strong function of the spin-up time.
The dependence is commonly reproducible on a given day, but rarely reproducible between
days. Figure 6.9 exemplifies this dependence. Some of these data correspond to the same
measurements as those shown in Fig. 6.3. If one plots angular momentum spread against
rotation frequency for these data points, no correlation is apparent.

No mechanism by which such a strong dependence may exist is known. However, pre-
liminary work from visiting student Shijia Sun has suggested that there may be a resonance
mechanism which occurs in the presence of a residual static quadrupole field. The resonance
occurs when the horizontal rocking mode frequency equals the rotation frequency, which
occurs during release if the target rotation frequency is smaller than the initial rocking mode
frequency. In the frame rotating with the potential, the static quadrupole is then resonant
with the rocking mode, which could possibly cause heating. Such a mechanism would likely
be sensitive to the phase of the wavepacket’s oscillation within the potential at the moment
of this resonance, which would indeed be affected by the spin-up time on the microsecond
scale.

The distribution of angular momentum

In most of this work, the angular momentum wavefunction is assumed to be Gaussian-
distributed about its center ¯̀. Two different ways of estimating the distribution lead to this
assumption:
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Figure 6.10: (a) Spectrum of sidebands of the 729 nm transition of a 2-ion crystal freely
rotating at 101.5 kHz. The solid curve is a fit for angle of the 729 nm addressing laser
relative to the rotor, and yields 7.5◦ relative to the normal of the rotor plane. Each sideband
is labelled with its rotational transition order ∆`. This data has been published in Ref. [41].
(b) Schematic of the geometry of the 729 nm laser beam relative to the rotor as inferred from
the coupling strengths seen in the data.

• The state at the beginning of rotational state preparation, which is the ground state
of the horizontal rocking mode if it is sideband cooled, is Gaussian-distributed in both
position and angular momentum. Quantum mechanical simulations of the spin-up-
and-release process indicate that spin-up changes only the mean of the distribution and
release changes only the width, but that the Gaussian shape is maintained throughout.

• A thermal state of the rotor is Gaussian-distributed, as follows from the Boltzmann
distribution P` ∼ e−E`/kBT = e−~ωr`

2/kBT . Thus even if some process tends to ther-
malize the rotational state, it will still tend towards a Gaussian distribution, albeit an
incoherent one.

The exact distribution, and even its coherence, is largely inconsequential for the work done
in this thesis. We assume always that the angular momentum wavefunction is localized and
characterized by some width σ`, but major results such as those in Chaps. 7 and 8 do not
rely on precise knowledge of the distribution.

6.3 The rotational spectrum

Successful rotational state preparation results in a state whose angular momentum is centered
near Iωtarget

rot and spread minimally, ideally such that the sideband linewidth 4ωrσ`∆` is on the
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order of 1 kHz. In this case, rotational sidebands of different orders ∆` become spectrally
resolved. A scan of the 729 nm laser frequency around the carrier electronic transition
between the S1/2 and D5/2 states reveals sidebands at detunings equal to integer multiples
of the rotation frequency. Figure 6.10(a) shows a measured rotational sideband spectrum.
Here, the target rotation frequency was 100 kHz, and sidebands are found at integer multiples
of 101.5 kHz. The height of the sidebands encodes their relative coupling strengths. From
(3.31b), the relative coupling strength of the ∆`-order sideband is

Ω∆` ∝ J∆`(ζ). (6.19)

Here the dimensionless parameter ζ, defined in (3.26b), may be taken to be real without loss
of generality. Note that while in principle, ζi may take on a different value for each ion in
a rotating ion crystal, each ion in our 2-ion crystal case has the same radius and thus has
the same magnitude of ζi. Defining relative phases such that ζ is real gives a more practical
expression for our 2-ion case:

ζ = k‖r = kr sin θk, (6.20)

where k‖ =
√
k2
x + k2

y is the projection of laser wavevector onto the rotor plane, and θk is
the angle of the wavevector relative to the normal of the rotor plane. The solid curve in
Fig. 6.10(a) is a fit to all coupling strengths together, using ζ as the only free parameter. The
relative coupling strengths seen in the data agree well with ζ = 3.5. Using k = 2π/(729 nm)
and r = 3.1 µm, we thus infer the beam angle θk to be 7.5◦ from the rotor normal.

6.3.1 Choice of beam angle

For a rotor of radius 3 µm, ζ may range between 0 and kr = 26, depending on the choice of
beam angle. As shown in Fig. 6.11, as the beam is tilted from vertical towards horizontal,
the coupling strengths become spread out across more transition orders. It is important to
choose a beam angle such that ζ is not too large, for a few reasons:

• A rotational spectrum with many sideband orders will be dense and span several MHz,
risking spectral overlap between sidebands of different modes, or even a neighboring
carrier ∆m of the |S〉 ↔ |D〉 electronic transition. Fewer sideband orders keeps the
spectrum clean and easy to manage and interpret.

• The value of ζ which optimizes the ∆`-order sideband coupling strength is very roughly
ζ ∼ ∆`. For example, as seen in Fig. 6.10, ζ = 3.5 works well for addressing ∆` ≤ 4.
A large ζ would thus be optimal for addressing high-order rotational transitions, but
doing so is generally not preferred. There are two reasons for this:

– The optimal possible coupling strength for a given sideband order falls as the
order decreases, as can be seen from Fig. 6.11.

– The linewidth of the ∆` sideband increases proportionally with ∆`.
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Figure 6.11: Relative rotational sideband coupling strength as a function of beam angle as
given by (6.20), for a rotor radius r = 3.1 µm. The inset is a zoom-in of the same plot. The
vertical line in the inset is at 7.5◦. The relative coupling strengths at this point are those
seen in Fig. 6.10.

Both of these effects serve to degrade the quality of operations on higher-order rota-
tional sidebands. It is thus better to instead optimize for sideband orders which do
not exceed ∼ 6.

For this reason, a nearly vertical beam is used to address rotational sideband transitions. An
additional benefit of using an addressing beam that is normal to the rotor plane is avoiding
the effects of heavy excess micromotion which occurs in the radial direction, due to the
ions being displaced by several micrometers from the RF null at the center of the trapping
potential. Addressing the ions vertically necessitates sideband cooling of the vertical COM
and rocking modes prior to rotational operations in order to facilitate coherent operations on
rotational sidebands. This requirement is what necessitates mitigation of technical electric
field noise in the vertical direction.

6.4 Rotational Rabi experiments

With resolved rotational sidebands, a particular transition order ∆` may be spectroscopi-
cally chosen for coherent addressing. Figure 6.12 shows Rabi oscillations of the first three
rotational sideband orders, spectrally separated from each other by 150 kHz. These Rabi
oscillations are very clean due to high-quality rotational state preparation, but in general,
the shape of the rotational sideband Rabi oscillations depends strongly on the quality of
rotational state preparation.
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Figure 6.12: Rabi oscillations on 1st, 2nd, and 3rd order rotational sidebands when rotating
at 150 kHz. The coupling strengths are given directly by the frequency of the Rabi oscilla-
tions, and their relative values are consistent with ζ = 1.85. This data was taken using a
different rotor radius and beam angle from that in Fig. 6.10.

6.4.1 Full 4-level dynamics

A more thorough description of the Rabi oscillation dynamics can be deduced beginning with
the Hamiltonian (3.24). It is convenient to divide through by ~ so that the Hamiltonian is
written in frequency units. It then may be written

H = ωr

(
Lz
~

)2

+
2∑
i=1

1

2
ωSD (|Di〉〈Di| − |Si〉〈Si|)

+
1

2

[
Ω |D1〉〈S1| ei

1
2
ζ(L++L−)−iωt + h.c.

]
+

1

2

[
Ω |D2〉〈S2| e−i

1
2
ζ(L++L−)−iωt + h.c.

]
,

(6.21)

where ω is the laser frequency and ωSD is the |S〉 ↔ |D〉 transition frequency. Here we have
used the fact that for a 2-ion crystal, ζ2 = −ζ1, so we define ζ ≡ ζ1. We also define ζ to be
real. Unlike in (3.24), here the Rabi frequency Ω is allowed in general to be complex. This
is a useful generalization for Ramsey experiments (see Sec. 6.5), where the phase of the final
pulse may differ from that of the initial pulse.
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From (3.30), we may expand the operators e±i
1
2
ζ(L++L−) as

ei
1
2
ζ(L++L−) =

∑
`,∆`

eiπ∆`/2J∆`(ζ) |`+ ∆`〉〈`|

e−i
1
2
ζ(L++L−) =

∑
`,∆`

eiπ∆`/2+iπ∆`J∆`(ζ) |`+ ∆`〉〈`|
(6.22)

If the sidebands are resolved, then only one value of ∆` will contribute to the above sum,
and the others will be off-resonant. We may furthermore shift the overall phase factor by
e−iπ∆`/2 for convenience, so that eiπ∆`/2 → 1 and eiπ∆`/2+iπ∆` → eiπ∆` = (−1)∆`.

H = ωr

(
Lz
~

)2

+
2∑
i=1

1

2
ωSD (|Di〉〈Di| − |Si〉〈Si|)

+
1

2

∑
`

[
Ω∆` |D1, `+ ∆`〉〈S1, `| e−iωt + h.c.

]
+ (−1)∆`1

2

∑
`

[
Ω∆` |D2, `+ ∆`〉〈S2, `| e−iωt + h.c.

]
,

(6.23)

where Ω∆` = ΩJ∆`(ζ). The factor of (−1)∆` on the term for ion 2 relative to that of ion 1
may be interpreted as a phase difference of either 0 or π, arising from the fact the two ions
always move in opposite directions when the crystal rotates.

To see the dynamics most clearly, we may now take two further steps, summarized as
follows:

• All terms Hamiltonian should be written in the basis {|SS, `〉 , |DS, `+ ∆`〉 ,
|SD, `+ ∆`〉 , |DD, `+ 2∆`〉}. In doing so, we find that the Hamiltonian may be
structured as a sum of non-interacting 4-level systems, one for each value of `. In
matrix form the Hamiltonian thus takes a block-diagonal form.

• We transform into a rotating frame which eliminates the time-dependence, defined by
the unitary

U =
∏
`

ei
1
2
ω(2|DD,`+2∆`〉〈DD,`+2∆`|−2|SS,`〉〈SS,`|)t. (6.24)

This is somewhat more convenient than choosing the interaction picture transforma-
tion, since the rotor nonlinearity means that each transition comes with its own unique
time-dependent transition frequency in the interaction picture (see e.g. (3.28)).

The resulting effective Hamiltonian may be written
∑

`H`, with each term most conveniently
written in matrix form using the basis {|SS, `〉 , |DS, `+ ∆`〉 , |SD, `+ ∆`〉 , |DD, `+ 2∆`〉}:

H` =


ωr`

2 + ∆ 1
2
Ω∗∆` (−1)∆` 1

2
Ω∗∆` 0

1
2
Ω∆` ωr(`+ ∆`)2 0 (−1)∆` 1

2
Ω∗∆`

(−1)∆` 1
2
Ω∆` 0 ωr(`+ ∆`)2 1

2
Ω∗∆`

0 (−1)∆` 1
2
Ω∆`

1
2
Ω∆` ωr(`+ 2∆`)2 −∆

 , (6.25)
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Figure 6.13: Energy level diagram for addressing the ∆`-order rotational sideband of a 2-ion
crystal. A single laser is used, whose detuning from the carrier ∆ is close to ωrot∆`, and
is near resonance with four transitions. Energies and transition frequencies are shown in
blue, and coupling strengths are shown in red. Due to the nonlinearity of the rotor, the two
excitations do not have precisely the same transition frequency, so each has its own detuning,
labelled δ1,` and δ2,`. A copy of this diagram applies for each ` which is initially occupied.

where ∆ ≡ ω − ωSD is the detuning from the carrier transition. Finally, one further sim-
plification may now be made by subtracting a constant ωr`

2 + ∆ from each term of the
Hamiltonian. This value depends on `, so performing this simplification changes the relative
phase between the terms H` of the Hamiltonian. It is therefore only appropriate when the
coherences between the terms are irrelevant. One case in which this condition may be vio-
lated is an experiment which involves multiple pulses on different ∆` sidebands, though this
is not done in this work. After subtracting off ωr`

2 + ∆ from each term, we are left with

H =
∑
`

H`, where

H` =


0 1

2
Ω∗∆` (−1)∆` 1

2
Ω∗∆` 0

1
2
Ω∆` −δ1,` 0 (−1)∆` 1

2
Ω∗∆`

(−1)∆` 1
2
Ω∆` 0 −δ1,`

1
2
Ω∗∆`

0 (−1)∆` 1
2
Ω∆`

1
2
Ω∆` −δ1,` − δ2,`

 (6.26)

with

δ1,` ≡ ∆− ωr(2`∆`+ ∆`2)

δ2,` ≡ ∆− ωr(2`∆`+ 3∆`2).
(6.27)



CHAPTER 6. CREATING SUPERPOSITIONS OF ROTATIONAL STATES 110

Frequency

Laser
frequency

5000
5000

Carrier sideband

5004
5004

5002
5002

4998
4998

4996
4996

Figure 6.14: Schematic example spectrum for an angular momentum distribution centered
at ¯̀ = 5000 showing how various detunings are defined. Each blue line is a transition
from ` → ` + ∆`, each of which has a different detuning from the laser frequency. This
schematic applies in the approximation that the two excitations of the ions `→ `+ ∆` and
`+ ∆`→ `+ 2∆` have approximately the same transition frequency.

δ1,` and δ2,` are the detunings from the |`〉 → |`+ ∆`〉 transition and from the |`+ ∆`〉 →
|`+ 2∆`〉 transition, respectively. Since the rotor energy eigenspectrum is nonlinear, these
transition frequencies are not exactly the same, and differ by 2ωr∆`

2. This difference is
independent of `.

6.4.2 Approximation as 2-level systems

In many cases, the difference between the two relevant transition frequencies 2ωr∆`
2 is small

and may be neglected. The dynamics will be affected by this discrepancy only at times
which are not small compared to about 1/ωr∆`

2. As an example with large ωr and ∆`, if
the rotor radius is 1.8 µm so that ωr = 2π× 20 Hz, then on the ∆` = 4 transition, the 4-level
dynamics become relevant at times approaching or greater than ∼ 1 ms. This is longer than
a typical time for a Rabi oscillation, whose Rabi frequency is typically several kHz, but can
be relevant for Ramsey experiments.

In the approximation that the detunings (6.27) are equal (which we then call simply δ`),
the 4-level dynamics are equivalent to the dynamics of a tensor product of two identical
two-level systems, each of which has the Hamiltonian

H2-level,` =
1

2

(
δ` Ω∗∆`

Ω∆` −δ`

)
. (6.28)

We may then interpret the dynamics as an ensemble of such 2-level systems, one for each
`. After rotational state preparation, the state of the rotor is approximately Gaussian-
distributed with center ¯̀ = Iωrot/~ and standard deviation σ`. Each value of ` will have
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Figure 6.15: Measured Rabi oscillations of rotational sideband transitions. (a) Rabi oscilla-
tions on the ∆` = 1 transition using the same rotational state preparation but different laser
powers to change the Rabi frequency. For comparison to the measured Rabi frequencies, the
sideband linewidth here is γ∆`=1 = 2π×8 kHz. (b) Rabi oscillations on the ∆` = 4 transition
using the same Rabi frequency but different rotational state preparation conditions.

a different detuning, which is what gives the ∆`-order sideband a finite linewidth. This is
schematically illustrated in Fig. 6.14. The dynamics then follow (3.32), which is convenient
to repeat here:

PD(t) =
∑
`

P`
Ω2

∆`

Ω2
∆` + δ2

`

sin2

(
1

2

√
Ω2

∆` + δ2
` t

)
. (6.29)

6.4.3 Effect of rotational state preparation quality

Importantly, the broader the angular momentum distribution, the more detuned contribu-
tions are present in the sum in (6.29), and hence the lower the overall contrast of the Rabi
oscillations. In particular, the contrast depends on the ratio of the Rabi frequency Ω∆` to
the sideband linewidth γ∆` = 4ωrσ`∆`. The contrast of rotational sideband Rabi oscilla-
tions may therefore be used as a measure of the angular momentum distribution width. We
do this by fitting a measured Rabi oscillation on a rotational sideband to (6.29), with the
distribution P` parameterized as

P`(σ`) =
1

σ`
√

2π
e
−1

2

(
`−¯̀

σ`

)2

. (6.30)

Fig. 6.15 shows measured Rabi oscillations and their fits using these parameters. Fig-
ure 6.15(a) demonstrates the effect of the contrast of the oscillations being dependent on
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the Rabi frequency. Figure 6.15(b) demonstrates the dependence of the contrast of the
oscillations on the quality of rotational state preparation.

The data in Fig. 6.15 is fit to functions of the form (6.29). It should be noted, however,
that this is valid only when other modes of motion may be ignored. Since our addressing
beam is nearly in the vertical direction, we must in general take into account the state of the
vertical vibrational modes. These are typically sideband cooled so as to not hinder rotational
operations. Still in general, while the functional form of rotational Rabi oscillations depends
on σ`, they are not always a good measurement of it. This is because σ` primarily influences
the Rabi oscillations via the contrast, which is sensitive to other factors. These include the
temperature of the vertical vibrational motion, but also include unintentional detunings from
the sideband, which can occur due to AC Stark shifts or due to a discrepancy between the
intended and actual rotation frequency, as in e.g. Fig. 6.3. Rotational Rabi oscillations are
therefore best used only as a rough estimate of the angular momentum width. A Ramsey
measurement can provide a more precise measurement of σ`.

6.5 Rotational Ramsey experiments

The previous section has shown that when the Rabi frequency of a rotational sideband tran-
sition exceeds its linewidth, all angular momentum states which have significant population
are near resonance, yielding a coherent Rabi oscillation. In this case, it becomes possible to
perform a π/2 pulse by turning on the laser for time π/2Ω∆`. Taking the laser phase to be
zero (such that the Rabi frequency is real), this approximately performs the operation

∑
`

c` |SS, `〉
Pulse tπ/2 = π

2Ω∆`−−−−−−−−−−→

1

2

∑
`

c`
[
|SS, `〉 − i |DS, `+ ∆`〉 − (−1)∆`i |SD, `+ ∆`〉 − (−1)∆`i |DD, `+ 2∆`〉

]
,

(6.31)

where c` is the angular momentum space wavefunction, so that P` = |c`|2 in the case of a
pure state. Using the conventions for energy offsets defined in (6.26), free evolution of this
state (i.e. in the absence of laser coupling) for time T evolves each term according to

|SS, `〉 → |SS, `〉
|DS, `+ ∆`〉 → e−iδ1,`T |DS, `+ ∆`〉
|SD, `+ ∆`〉 → e−iδ1,`T |SD, `+ ∆`〉
|DD, `+ 2∆`〉 → e−i(δ1,`+δ2,`)T |DD, `+ 2∆`〉

(6.32)

where δ1,` and δ2,` are given by (6.27). It is convenient to define an overall detuning of the
laser from the center of the ∆` sideband, which is approximately ωrot∆` ≈ 2ωr ¯̀∆`. More
precisely, there are two transition frequencies ωr(2¯̀∆` + ∆`2) and ωr(2`∆` + 3∆`2), for
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exciting the first and second ion, respectively. Defining the offset is arbitrary, but here we
will choose the average of these two, so that

δ ≡ ∆− ωr(2¯̀∆`+ 2∆`2). (6.33)

Equation (6.32) then becomes

|SS, `〉 → |SS, `〉
|DS, `+ ∆`〉 → eiωr[2(`−¯̀)∆`−∆`2]T−iδT |DS, `+ ∆`〉
|SD, `+ ∆`〉 → eiωr[2(`−¯̀)∆`−∆`2]T−iδT |SD, `+ ∆`〉
|DD, `+ 2∆`〉 → eiωr4(`−¯̀)∆`T−2iδT |DD, `+ 2∆`〉 .

(6.34)

6.5.1 Rotational Ramsey dephasing

The relative phases evolve at different rates for different values of `, leading to a dephasing in
the electronic degree of freedom. Focusing on the phase of the |DS, `+ ∆`〉 term in (6.34),
the discrepancy in phase between angular momenta `1 and `2 is 2ωr(`2 − `1)∆`T . For an
angular momentum distribution whose standard deviation is σ`, the appreciably occupied
angular momentum states span roughly from ¯̀− σ` to ¯̀+ σ`, so that the spread of phases
across the distribution is roughly 4ωrσ`∆`T = γ∆`T . The timescale of the dephasing is
therefore given by the reciprocal of the sideband linewidth 1/γ∆`. Thus for broader angular
momentum distributions or for higher-order sidebands, this dephasing occurs more quickly.
These dynamics may be probed with a Ramsey experiment where a second π/2 pulse is
applied after free evolution for time T . Note that this dephasing comes from fully coherent
dynamics, and occurs because the measurement traces the state over the rotational degree
of freedom.

We may also interpret the Ramsey dephasing from a semi-classical point of view in po-
sition space. The superposition |`〉 + |`+ ∆`〉 is a superposition of two angular frequencies
whose difference is 2ωr∆`. We interpret this as the ion crystal’s orientation being in super-
position, with the arms of the superposition separating at angular frequency 2ωr∆`. If the
angular momentum spread is σ`, then the position-space spread is 1/2σ` radians by the un-
certainty principle. It therefore takes a time T = (1/2σ`)/(2ωr∆`) = 1/4ωrσ`∆` = 1/γ∆` for
the position-space wavepackets to no longer overlap each other. The separation in position
space becomes manifested in the dephasing of the electronic state. It should be noted how-
ever that the true quantum evolution in position space involves dispersion of the wavepacket
across the entire rotor, so the picture of two well-defined orientations in superposition is not
strictly correct.

It is worth noting explicitly here that, while the results of this section (the Ramsey
dephasing dynamics) and those of Sec. 6.4 (Rabi oscillations) both show that the dynamics
are sensitive to the angular momentum spread, they do not assume the angular momentum
wavefunction to be a pure state. The same results apply in both cases for an incoherent
mixture or a pure state. This is because as long as a single ∆` sideband is addressed within
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Figure 6.16: Measurements of rotational Ramsey dephasing on the ∆` = 1 and ∆` = 4
sidebands, using identical rotational state preparation. Here, ωr = 6.2 Hz. Both curves are
fit to σ` = 36. This data is published in Ref. [41], where the fitting function used was slightly
different and thus yielded a slightly different value of σ`.

an experiment, the coherences between angular momentum states do not factor in. This
can be traced back to the terms of the Hamiltonian (6.26) all commuting with one another:
[H`, H`′ ] = 0.

Measurements and utility as a measurement of rotational state preparation
quality

Fig. 6.16 shows a measurement of the Ramsey dephasing for ∆` = 1 and ∆` = 4 superposi-
tions. In both cases, an overall detuning of about 6 kHz is used to see fringes. We expect the
shape of the decay to be Gaussian, as it should be the Fourier transform of the underlying
angular momentum distribution causing the dephasing, which we assume to be Gaussian.
The data in Fig. 6.16 are fit to a function of the form

PD(T ) =
1

2

[
e−(2ωrσ`∆` T )2/2 cos(δT ) + 1

]
, (6.35)

with additional parameters to account for imperfect overall contrast and phase offsets. The
shape of the measured decay is consistent with this Gaussian shape. Furthermore, the value
of σ` for the two curves agree, i.e. the Ramsey contrast of the ∆` = 4 sideband decays 4
times faster than that of the ∆` = 1 sideband, as expected.

The rotational Ramsey decay rate makes for a reliable measurement of the angular mo-
mentum spread. The rate of dephasing is directly proportional to σ`, which is the only
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unknown parameter. Factors that could be convolved with the contribution of σ` when mea-
suring using Rabi oscillations are instead easily distinguished when measuring using Ramsey
measurements: A finite temperature reduces only the overall contrast, and a detuning only
changes the frequency of the fringes. Both of these are independent of the rate of dephasing
which encodes σ`. This is the method by which the measurements of σ` in Fig. 6.9 were
made.

6.5.2 Rotational Ramsey rephasing

At time T = π/ωr∆`, the phases of all terms in (6.34) differ by exactly a multiple of 2π. A
rephasing should therefore be expected to occur at this time. In the semi-classical picture of
a superposition of separating orientations, this time corresponds to the time it takes for the
two different orientations to separate by 2π radians and thus overlap again. This experiment
has not yet been performed, but considerations regarding it are the subject of Chapter 8. It
has thus far been hindered by decoherence of angular momentum superpositions, which is
the subject of Chapter 7.
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Chapter 7

Decoherence of rotational
superpositions

The utility of any non-classical superposition state is limited by its coherence time. For
superpositions of angular momenta in the trapped-ion rotor, a simple Ramsey experiment
does not suffice to measure coherence. This is due to the dephasing dynamics discussed in
Sec. 6.5.1, which occur even with under perfect unitary evolution. Instead, to measure the
coherence of angular momentum superpositions, we insert a Hahn-echo π pulse at the center
of the Ramsey time to reverse the free evolution. This measurement is described in more
detail in Sec. 7.1. Figure 7.1 shows two sample measurements, for ∆` = 1 and 4, of the
rotational coherence. We find that the coherence lasts on the order of a few milliseconds,
and decays faster for higher-order superpositions.

In the process of investigating the cause of rotational decoherence, we have considered
several potential sources and estimated the magnitude of their impact. These are described
in Sec. 7.2. The particular source of decoherence which has proven to be the limiting factor
in our experiment, angular momentum diffusion, is expanded upon further in Secs. 7.3 and
7.4.

7.1 Protocol for measuring coherence of rotational

superpositions

The full protocol for measuring rotational coherence is as follows:

• Rotational state preparation

• π/2 pulse: 729 nm laser pulse on the ∆` sideband for time tπ/2 = π/2Ω∆`

• Wait for time T/2

• π pulse: 729 nm laser pulse on the ∆` sideband for time tπ = π/Ω∆`



CHAPTER 7. DECOHERENCE OF ROTATIONAL SUPERPOSITIONS 117

0 2 4 6 8

Ramsey time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
h

as
e

co
n
tr

a
st

∆` = 1

∆` = 4

Figure 7.1: Coherence measurement of angular momentum superpositions of orders ∆` = 1
and 4. Here the ion crystal is rotating at approximately 100 kHz and has a rotational constant
of ωr = 2π × 6.2 Hz.

• Wait for time T/2

• π/2 pulse on the ∆` sideband with some arbitrary phase φ.

For most precise measurements, we scan the phase of the final pulse from 0 to 2π before
incrementing the Ramsey time T . The coherence at a given Ramsey time is quantified by
the phase contrast. This way, phase shifts which occur during the experiment (but which
are the same for every repetition) do not affect the results. The alternative way to see full
phase contrast is to add a detuning to the pulses so that the relative phase of the final pulse
oscillates as the Ramsey time is scanned, as for example in Fig. 6.16. We find that full phase
scan measurements are helpful when Ramsey times exceed ∼ 1 ms.

We find in our experiment that the local magnetic field drifts with the phase of the AC
electrical wall power, causing dephasing of the electronic |S〉 ↔ |D〉 transition, whose tran-
sition frequency depends on the magnetic field. The total period is 1/(60 Hz) = 16.7 ms, and
magnetic field dephasing effects become significant after 2− 3 ms. Thus for any experiment
which lasts longer than ∼ 2 ms and relies on electronic coherence, we synchronize the start
of each repetition of the experiment to the wall phase to eliminate this effect.
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Figure 7.2: Schematic of the state of the system after the first π/2 pulse in a Ramsey
experiment for ∆` = 2. Red arrows show some of the coherences which are probed by the
laser.

7.1.1 The rotational coherence measurement protocol as a
measure of pure superpositions of angular momentum
eigenstates

We claim that the measurement protocol outlined in this section is a measure of the coherence
of pure angular momentum superpositions, i.e. |`〉+ |`+ ∆`〉. This may not be immediately
obvious given that the initial state of our rotor is typically spread across many values of
`, and that this spread (∼ 20 − 40) is in fact is much larger than ∆` (1 − 4). To see
this, we may recall the picture of the picture of the rotor in superposition as an ensemble
of non-interacting 4-level manifolds containing states {|SS, `〉 , |DS, `+ ∆`〉 , |SD, `+ ∆`〉 ,
|DD, `+ 2∆`〉}, offered in Secs. 6.4 and 6.5. The π/2 and π pulses induce transitions only
within these manifolds, and thus the measurement only sensitive to the coherences within
them. Figure 7.2 shows this schematically, indicating that the only coherences probed by
the laser are those of the fixed value ∆`. The values of ` for these manifolds are spread
across a range given by σ`, and are centered at ¯̀> 103. Therefore, unless the nature of some
decoherence source changes significantly across values of ` which are spread by σ`/¯̀∼ 1%,
the angular momentum spread will not have any impact on its effect, and we may regard
the measured decoherence as being due to a simple superposition of the form |`〉+ |`+ ∆`〉.

7.1.2 The 4-level contrast oscillation effect

Ideally, the Ramsey experiment with a spin-echo pulse included would reverse all detunings,
resulting in a rephasing and thus effectively applying the identity operation overall in the
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absence of decoherence. This is usually approximately the case, but the small discrepancy
between the transition frequencies of |`〉 → |`+ ∆`〉 and |`+ ∆`〉 → |`+ 2∆`〉 results in in-
terference of the phases acquired by these two superpositions, which in turn affects the overall
phase contrast. It is important to understand this effect so that it may be differentiated from
true decoherence in a measurement.

Oscillations in the excitation contrast

We may compute the full time-evolution operator of the rotational-Ramsey-with-spin-echo
protocol using the Hamiltonian (6.26). At each step in the protocol we compute the corre-
sponding time-evolution operator as e−iH(Ω∆`)t, where t = tπ/2 for the initial and final pulses,
t = tπ for the echo pulse, and t = T/2 for the Ramsey wait times. During the wait times,
Ω∆` = 0. The final π/2 pulse has a phase φ relative to the first. For a simpler calculation,
we may assume that the operations are perfect (Ω∆` � δ1,2,`) so that δ1,2,` = 0 during the
pulses. The full time-evolution operator U is computed as the product of that for each step.
It is easiest to do this individually for each term `, so that U =

∏
` U`. Explicitly,

U` = e−iH`(Ω∆`e
iφ)tπ/2e−iH`(0)T/2e−iH`(Ω∆`)tπe−iH`(0)T/2e−iH`(Ω∆`)tπ/2 . (7.1)

For an initial state
∑

` c` |SS, `〉, we can then compute the final state probabilities:

PSS =
∑
`

|c`|2| 〈SS, `|U`|SS, `〉|2 =
1

4

[
1 + 2 cos(φ) cos

(
δ2,` − δ1,`

2
T

)
+ cos2(φ)

]
=

1

4

[
1 + 2 cos(φ) cos

(
∆`2ωrT

)
+ cos2(φ)

]
PDS =

∑
`

|c`|2| 〈DS, `|U`|SS, `〉|2 =
1

2
sin2(φ)

PSD =
∑
`

|c`|2| 〈SD, `|U`|SS, `〉|2 =
1

2
sin2(φ)

PDD =
∑
`

|c`|2| 〈DD, `|U`|SS, `〉|2 =
1

4

[
1− 2 cos(φ) cos

(
δ2,` − δ1,`

2
T

)
+ cos2(φ)

]
=

1

4

[
1− 2 cos(φ) cos

(
∆`2ωrT

)
+ cos2(φ)

]
.

(7.2)

The difference δ2,` − δ1,` is equal to 2∆`2ωr, independent of `. Excitation is computed as

E =
1

2
(2PDD + PDS + PSD), (7.3)

and the excitation contrast is the difference between the minimum and maximum values of
the excitation as φ is swept from 0 to 2π, which is given by

C =
∣∣cos

(
∆`2ωrT

)∣∣. (7.4)
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Figure 7.3: (a) Simulated excitation phase contrast in a rotational Ramsey experiment with a
spin echo, for the cases of perfect and imperfect rotational sideband operations. The shaded
regions show the range of possible phase contrasts which may be measured if decoherence
is present. (b) Sample decoherence measurements with ∆` = 3, with the corresponding
expected contrast oscillation envelope shown. Here ωr = 2π × 13 Hz.

Thus the full phase contrast is in fact modulated at the frequency ∆`2ωr, which is equal to
half the difference in transition frequencies between |`〉 → |`+ ∆`〉 and |`+ ∆`〉 → |`+ 2∆`〉.
This effect produces a node in the contrast at time T = π/2∆`2ωr, which could be mistaken
for decoherence. This effect becomes rapidly more pronounced as ∆` is increased: For
ωr = 2π × 10 Hz, the node occurs at T = 25 ms for ∆` = 1, and T = 1.6 ms for ∆` = 4.

Equation (7.4) assumes perfect operations. Relaxing this assumption makes it difficult
to obtain a closed-form solution, but numerical simulations suggest that the contrast oscil-
lations are affected by the quality of operations. In particular, lowering the initial contrast
increases the Ramsey time at which the first node occurs. Therefore, imperfect operations
cannot be accounted for by simply multiplying (7.4) by a constant factor less than unity;
numerical simulations are necessary to predict the node time. The simulations are done by
implementing the time-evolution operator (7.1) without assuming the detunings to be zero
during the Rabi pulses. Empirically, the numerically simulated contrast follows the form

C =
∣∣(a+ b) + (a− b) cos

(
∆`2ωrT

)
− 1
∣∣, (7.5)

where a and b are empirical parameters. For perfect operations, a = 1 and b = 0. As an
example, Fig. 7.3(a) shows the simulated phase contrast for the case of perfect operations
and for the case where Ω∆`/γ∆` = 1, whose corresponding Rabi oscillations have an initial
contrast of 0.81, independent of ∆`. The simulated phase contrast for the case of imperfect
contrast is well-modeled by (7.5) with a = 0.91 and b = 0.31. In this case, imperfect
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operations are thus predicted to increase the time of the first node by a factor of 1.2. In
the presence of decoherence, the measured phase contrast must lie somewhere within the
corresponding shaded region. Figure 7.3(b) demonstrates this effect with data. A sample of
measured decoherence curves for ∆` = 3 is shown, with fits of the form C(T ) = C0e

−(γT )3

(see Sec. 7.4 for the motivation for this choice of coherence decay function), additionally
multiplied by the envelope (7.5) accounting for the imperfect operations. If the coherence
time is long enough, then it is necessary to take into account the contrast oscillation effect
in order to properly estimate the underlying decoherence rate γ.

The parity contrast

In principle, the contrast oscillation effect only appears to be indistinguishable from true
decoherence because of the choice of excitation as the observable. One may instead choose
a different observable, for example the parity, defined as

Π = PSS + PDD − PDS − PSD. (7.6)

The parity is effectively a measure of the coherence between the |SS, `〉 and |DD, `+ 2∆`〉
terms of the superposition, as opposed to between the terms which differ by only ∆`. From
(7.2), we find that the parity is simply cos2(φ), and therefore the parity contrast is always
unity in the absence of decoherence: Cpar = 1. Choosing the parity as the observable should
therefore circumvent the contrast oscillation effect. However, in this work the excitation is
always chosen as the observable.

7.2 Potential sources of rotational decoherence

7.2.1 Electronic coherence

The rotational coherence measurement protocol entangles the rotational state with the elec-
tronic state. Thus if the electronic state decoheres, due to for example magnetic field fluctu-
ations or laser instability, then a loss in phase contrast will be measured. This will translate
directly to decoherence in a rotational coherence measurement. Figure 7.4 shows a co-
herence measurement on the carrier transition using a single ion. Here, the superposition∣∣S1/2(m = −1/2)

〉
+
∣∣D5/2(m = −1/2)

〉
is created. This experiment uses a spin-echo π pulse

in the middle of the Ramsey sequence for best comparison to the rotational coherence mea-
surements. The coherence lasts for more than 30 ms, which is much longer than measured
rotational coherence times. For minimized sensitivity to electronic decoherence due to mag-
netic field fluctuations, the S1/2(m = ±1/2) ↔ D5/2(m = ±1/2) transition is always used
when creating rotational superpositions.
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Figure 7.4: Measurement of electronic coherence with spin-echo included, using a single ion
in the

∣∣S1/2(m = −1/2)
〉

+
∣∣D5/2(m = −1/2)

〉
superposition.

7.2.2 Slowly drifting residual static quadrupole fields

Static voltages on the DC electrodes are used to compensate stray fields such that the
potential landscape for the rotor is as flat as possible in the absence of an applied pinning
potential. Since a stray dipole field will physically move the ions into a new potential
minimum, the lowest-order multipole component of possible stray fields in the rotor potential
is quadrupole fields. A stray quadrupole field in the rotor may be described by the potential

Φ(θ) = Φ0 sin2 θ. (7.7)

We measure the magnitude of stray quadrupoles by measuring the frequency of the horizontal
rocking mode ωhr,resid with no pinning potential applied, which is related to the magnitude
of the stray quadrupole by

ωhr,resid = 2

√
Φ0ωr
~

. (7.8)

This relation is also given in (6.10), where the only difference is that in (6.10), the quadrupole
potential is intentional.

A typical minimum achievable magnitude of stray quadrupole is such that ωhr,resid ≈
2π × 20 kHz. The corresponding potential height is much smaller than rotational energies
when the rotor rotates at frequencies on the order of 100 kHz, so this stray quadrupole does
not hinder rotation. However, it does act as a perturbation to the rotational energies. Using
perturbation theory, the first-order energy perturbation of (7.7) to an otherwise free rotor is
Φ0/2, independent of ` and thus has no effect on transition frequencies. For large ` (compared
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to 1), the second-order perturbing energy term is

δE
(2)
` =

Φ2
0

64~ωr`2
. (7.9)

This is a function of ` and thus will affect rotational transition frequencies. We can compute
that the residual quadrupole changes the transition frequency by

δω`,`+∆` =
Φ2

0∆`

32~2ωr`3
=
ω4
hr,resid

64ω3
rot

∆`, (7.10)

where the second equality uses the relations (7.8) and ωrot = 2ωr`.
The presence of a truly static residual quadrupole field will only shift the rotational

energies and transition frequencies; if these remain constant, then it will not result in de-
coherence. If on the other hand the magnitude of the residual quadrupole drifts, then the
rotational transition frequency will change, resulting in dephasing. Assuming a fairly ex-
treme residual quadrupole magnitude drift of 50%, the resulting drift in transition frequency
is roughly 5 Hz×∆` for 100 kHz rotation frequency. This corresponds to dephasing times on
the order of 100 ms (if ∆` is not too large), and longer if the rotation frequency is faster.
This effect is therefore small in comparison to measured coherence times.

7.2.3 Rotational coupling to stretch and vertical rocking motion

Centrifugal distortion of the rotor results in coupling between the rotational motion and the
stretch and vertical rocking motion, as discussed in Sec. 3.5. This in turn causes the energy
eigenspectrum to be non-separable in the quantum numbers of the respective modes, given
by (3.61). The rotational transition frequency then depends on the state of the stretch and
rotational modes, which when in some thermal distribution would be expected to cause a
spread in rotational transition frequencies and thus rotational dephasing. To estimate the
magnitude of this effect, we compute the transition frequency between |`〉 and |`+ ∆`〉 using
(3.61):

ω`,`+∆`(ns, nvr) ≈ 2ωr`∆`

(
1− 2ε` +

2ωrns
ωs

+
2ωrnvr
ωvr

)
, (7.11)

so that the contribution to the transition frequency from the stretch and rocking motion is

δω`,`+∆` ≈ 2ωr`∆`

(
2ωr
ωs

ns +
2ωr
ωvr

nvr

)
. (7.12)

For both the stretch and vertical rocking modes, the fractional change in rotational transition
frequency is 2ωrnj/ωj.

• Stretch: The factor 2ωrns/ωs is roughly 10−5 ns. Assuming that the stretch mode is
at the Doppler temperature occupies a spread of 102 Fock states, the fractional change
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in rotational transition frequency is 10−3, or an absolute spread of 100 Hz×∆` for 100
kHz rotation, yielding a dephasing time of roughly 10 ms. This has not been observed
to be a limiting factor, but if it does become one, a simple solution is to sideband cool
the stretch motion.

• Vertical rocking: The vertical rocking mode is typically sideband cooled and thus will
contribute very little to this effect. It should be noted however that if the vertical and
horizontal COM secular frequencies are close to each other, then this mode frequency
can be small, enhancing this effect. For this to become comparable to the contribution
from the stretch mode (when the stretch motion is not sideband cooled), the vertical
rocking mode frequency would need to be reduced by a factor of roughly 102, or down
to the order of 10 kHz.

7.2.4 Trap frequency instability

The energy scale of the rotational eigenspectrum is set by the rotational constant: E` =
~ωr`2. The rotational constant is inversely proportional to the square of the rotor radius,
which is set directly by the horizontal COM secular frequency. Therefore, instabilities in the
horizontal trap frequency will cause rotational dephasing. Explicitly,

ωr =

(
4π2~3ε20
me4

)1/3

ω4/3
x =

(
4.36× 10−8 s1/3

)
ω4/3
x . (7.13)

The ∆` transition frequency is
ω`,`+∆` = 2ωr`∆` (7.14)

for ` � ∆` so that ∆`2 terms can be neglected. If the trap frequency changes by δωx,
this will cause a change in the rotational constant δωr according to (7.13), which shifts the
rotational transition frequency according to (7.14) by

δω`,`+∆` =
4ωrot

3ωx
δωx∆`, (7.15)

where the relation ωrot = 2ωr` has been used. This directly relates the timescale of de-
phasing of the horizontal COM vibrational motion 1/δωx to the timescale of dephasing of a
rotational superposition 1/δω`,`+∆`. The former is straightforwardly measured by preparing
a superposition |0〉+ |1〉 of the horizontal COM mode and measuring its decoherence. This
can be done using only a single ion. We prepare this superposition disentangled from the
vibrational superposition using the pulse sequence shown in Fig. 7.5. This measurement
requires ground-state cooling. The measured timescale of the decoherence is 32 ms at a
trap frequency of 1.45 MHz. For a conservatively high rotation frequency of 300 kHz, this
corresponds to an inferred rotational coherence time of 120 ms/∆`, much longer than our
measured rotational coherence times.
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Figure 7.5: Coherence measurement of the transverse vibrational motion using a single
trapped ion. Left: Pulse sequence for the measurement, using composite combinations of
pulses. π/2c refers to a π/2 pulse on the carrier transition, and πbsb refers to a π pulse
on the blue sideband of the mode being measured. A composite echo pulse is included to
reproduce the conditions of the rotational coherence measurements. Right: Measurement
of the stability of the horizontal motion. The motional coherence lasts for approximately
32 ms.

7.2.5 Angular momentum diffusion

A mechanism which torques the rotor will result in transitions between angular momentum
states. If these angular momentum kicks are random and are also equally likely to increase
or decrease the angular momentum, the result is a random walk in angular momentum
space. Over time and averaged over many realizations, this diffuses the angular momentum
state, increasing the spread σ`. The random nature of the angular momentum kicks makes
the process incoherent, therefore leading to decoherence of the rotor state. Theoretical
derivation of the Lindblad master equation corresponding to this situation, as well as its
consequences, has taken place recently in the literature [42–44].

For the work done in this thesis, angular momentum diffusion has been the limiting
factor for rotational coherence. To show this, we have performed a systematic study of
diffusion-limited decoherence of our rotor. Sec. 7.3 discusses angular momentum diffusion as
it pertains to the trapped-ion rotor, and Sec. 7.4 discusses the resulting decoherence.
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7.3 Angular momentum diffusion

7.3.1 The ion-field interaction Hamiltonian

Angular momentum diffusion occurs in our trapped-ion rotor as a result of noisy electric
fields. In order to cause angular momentum kicks, the noise must be resonant with the
rotation. This is analogous to heating of the center-of-mass motion discussed in Sec. 5.1. To
see this, we can begin with the multipole expansion of an arbitrary electric field interacting
with the ions, as given by (5.1). Here, we have two ions, with positions r1 and r2. The
Hamiltonian for interaction with this potential is

HE(t) = eΦ(r1, t) + eΦ(r2, t) = 2eΦ(0, t)− er1 · E(0, t)− e

2

∑
j,j′

r1jr1j′
∂Ej
∂r1j′

(0, t) + ...

− er2 · E(0, t)− e

2

∑
j,j′

r2jr2j′
∂Ej
∂r2j′

(0, t) + ...

(7.16)

In this case, we will find that we need to keep the field gradient terms. The first term
is constant in space and thus does not contribute any force. It is convenient to make a
coordinate transformation into center-of-mass and relative coordinates R = (r1 + r2)/2 and
r = r1 − r2. Substituting these new coordinates into (7.16), we find that the terms fully
separate into center-of-mass terms and relative terms. Since we are interested only in the
rotational motion, which is a relative mode, we may ignore the center-of-mass terms. We
find that the ri ·E terms contribute only to the center-of-mass terms in the new coordinates,
leaving us only with the field gradient terms. The remaining terms, when expanded out for
each coordinate, are

HE,rel(t) =− e

4

(
x2∂Ex

∂x
+ y2∂Ey

∂y
+ z2∂Ez

∂z

)
− e

2

(
xy
∂Ex
∂y

+ yz
∂Ey
∂z

+ xz
∂Ez
∂x

)
.

(7.17)

Next, we transform into cylindrical coordinates, as done in Sec. 3.3.1. The radial and angular
coordinates ρ and θ replace x and y as ρ cos θ = x, ρ sin θ = y. We furthermore write all
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coordinates in terms of ladder operators for their respective relative modes:

ρ = ρe +

√
~

2µωs
(as + a†s)

cos θ =
1

2
(L+ + L−)

sin θ =
1

2i
(L+ − L−)

z =

√
~

2µωvr
(avr + a†vr).

(7.18)

The subscripts s and vr refer to the stretch and vertical rocking modes. Since we are using
relative coordinates as in Sec. 3.3.1, this has been written in terms of the relative equilibrium
radius ρe (which is equal to twice the true radius 2r) and in terms of the reduced mass µ
(which is equal to half the mass of one ion m/2). Substituting into (7.17), we find that the
dominant terms involving rotational operators emerge from the x2, y2, and xy terms. In
total these are

HE,rot(t) =
eρ2

e

16
[E(t)L2

+ + E(t)∗L2
−] =

er2

4
[E(t)L2

+ + E(t)∗L2
−], (7.19)

where E = −∂xEx + ∂yEy + 2i∂yEx. This indicates that circularly polarized electric field
gradients can kick the angular momentum up or down in units of 2~. There are also terms
which couple the rotational motion to the stretch and vertical rocking motion, but these are
suppressed by a factor of

√
~/2µωj/r ∼ 10−2. Such rovibrational heating is considered later

in Sec. 8.4.3.

7.3.2 The diffusion coefficient

The Hamiltonian (7.19) kicks the angular momentum up and down with equal coupling
strength. Thus if the electric field is noisy, we expect this to lead to angular momentum
diffusion. This can be expressed in terms of the diffusion coefficient D, defined by the rate of
increase of the variance of the angular momentum state: d

dt
〈L2

z〉 = 2D. Under diffusion, the
dimensionless angular momentum standard deviation σ` will increase with time according to

σ`(t) = σ`(0) +

√
2Dt

~
. (7.20)

To show that the interaction (7.19) leads to angular momentum diffusion, we can perform
a similar treatment to that outlined in Sec. 5.1, where we transform into the interaction pic-
ture and compute the transition rate between eigenstates. The result is angular momentum
diffusion with diffusion coefficient

D =

(
er2

2

)2

SE(2ωrot), (7.21)
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where SE(2ωrot) = 2
∫∞
−∞ dτ 〈E(t)E(t+ τ)〉 e−i2ωrott is the power spectral density of the rel-

evant circularly polarized field gradient at twice the rotation frequency. The derivation of
this result can be found in [45]. To summarize some noteworthy points about the result:

• The quadrupole moment for the interaction of the rotor with the field gradient is
er2/2. This is large compared to the corresponding quadrupole moment for vibrational
differential modes in typical trapped ion crystals by a factor of the rotor radius divided
by the spatial extent of the ground state wavefunction of the vibrational mode. Thus
in a sense, angular momentum diffusion occurs faster than heating of an analogous
vibrational mode. Section 7.3.3 quantifies this comparison.

• Unlike a harmonic mode, the transition frequency for a rotor depends on its state.
This manifests in the interaction picture transformation, where L+ in the interaction
picture is given by (3.28), repeated here for convenience:

L̃+(t) =
∑
`

ei(2`+1)ωrt |`+ 1〉〈`| . (7.22)

It was therefore necessary to also assume the following to derive (7.21):

– The rotor state is localized in angular momentum.

– The bandwidth of the noise is larger than the spread of rotation frequencies,
so that the noise power spectral density is approximately constant across this
spread, allowing the diffusion coefficient to be expressed as a function of only a
single spectral density.

• Resonance occurs when the noise field oscillates at twice the rotation frequency. The
intuition for why this should be is as follows: The rotor has a 180◦ rotational symmetry,
and thus effectively returns to its original orientation after half of a rotation period.
The noise must therefore oscillate at twice the rotation frequency to be resonant. See
also Fig. 7.6. A noise field which oscillates at the rotation frequency would always
speed up the rotor during half of a rotation and slow it down during the other half,
and thus would not be resonant. In general, a rotor with N -fold rotational symmetry
would be sensitive to noise at frequency Nωrot.

Fig. 7.6 provides a visualization of resonant field gradients that can cause diffusion. In
both cases, the field co-rotates with the ions, but the phase of the rotation differs in the two
examples. In (a), the field direction at the location of the ions matches their direction of
rotation, thus speeding the rotor up. In (b), the field direction is the opposite of the direction
of rotation, slowing the rotor down. Noise (by definition) is a randomization of this phase,
so the overall effect is diffusion. Note that a linearly polarized noisy field gradient may be
written as a sum of two oppositely-rotating circularly polarized field gradients. Only the
component which is co-rotating with the rotor will contribute to diffusion.
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Figure 7.6: (a-b) Possible configurations of resonant electric-field gradients which may torque
the rotor. The ions are shown rotating clockwise, and the field co-rotates with them, thus
changing the angular momentum. (c) The effect of diffusion on the angular momentum
space population. The width σ` increases according to (7.20). The center of the distribution
¯̀ remains constant, and the shape remains Gaussian.

7.3.3 Comparison to the heating rate of rocking modes

As discussed in Sec. 5.1.1, differential modes of motion of a trapped-ion crystal (where ions
move relative to each other, as opposed to center-of-mass modes) are sensitive to electric
field gradients. The crystal’s motion couples to these gradients via a quadrupole moment,
which for a vibrational mode of motion is proportional to the ion-ion distance times the
ground-state wavefunction size, Q ∼ r

√
~/2mωj. The former is typically of order 1 µm and

the latter is typically of order 10 nm. The resulting heating rate is proportional to the square
of this quadrupole moment.

In comparison, the rotor spans a much larger region of space than the motion of a pinned
ion crystal. The quadrupole moment for the rotor coupling to electric field gradient noise is
proportional to r2, and is thus significantly larger. The rate of diffusion, D/~, proportional
to the square of the quadrupole moment, is therefore a factor of ∼ 104 times that of a
comparable differential vibrational mode of motion, e.g. the horizontal rocking mode when
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Figure 7.7: Sample diffusion coefficient measurement. Here, the ion crystal is rotating at
100 kHz and has a radius of 2.1 µm. For each wait time, a Ramsey decay curve on the ∆` = 1
sideband is measured and fit for σ`.

the crystal is pinned. Therefore, while the heating rate of a differential vibrational mode of
motion is often negligible, the rate of diffusion of the rotor is not.

Using these relations, one may derive an estimate for the expected angular momentum
diffusion coefficient given known heating rates. The horizontal center-off-mass motion has
been measured to heat at roughly 50 q/s at a frequency of 1 MHz. We may estimate the
corresponding heating rate of a comparable differential mode at the same frequency by
multiplying by (2r/h)2 ≈ 5× 10−4, where 2r ≈ 4 µm is the ion-ion distance and h ≈ 180 µm
is the height of the ion crystal above the trap surface. Multiplying by 104 to account for the
increased quadrupole moment of the rotor and another factor of 5 assuming 1/f noise to
scale the resonance frequency from 1 MHz down to 200 kHz, we may estimate the diffusion
coefficient to be of the order D/~2 ∼ 1 ms−1. The measurements shown in the following
subsection indeed find the diffusion coefficient to be of this order of magnitude.

7.3.4 Measurements of angular momentum diffusion

To measure angular momentum diffusion, we measure the angular momentum spread σ`
as a function of wait time between rotational state preparation and measurement. This is
analogous to a measurement of the heating rate of a vibrational mode, where one measures
n̄ as a function of time after cooling (see Sec. 5.2). The measurement of σ` is most reliably
done by measuring the rate of Ramsey dephasing of a ∆` = 1 superposition, as discussed
in Sec. 6.5.1. The Ramsey decay curve is fit to a function of the form (6.35) to extract
σ`. During the wait time, noisy resonant electric fields diffuse the angular momentum state
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Figure 7.8: Circuit used for injecting quadrupole noise, including the rotation circuit.

in accordance with (7.20), and we infer the diffusion coefficient D from the measurements
of σ` as a function of wait time. Figure 7.7 shows a sample measurement of the diffusion
coefficient. Here, the result is 2.3 ~2/ms. We find in general that the diffusion coefficient is
inconsistent, ranging between 2 and 20 ~2/ms. This is possibly due to inconsistent levels of
technical noise on the electrodes.

7.3.5 Noise injection

The diffusion coefficient measurement shown in Fig. 7.7 can be considered a measurement of
the power spectral density of the electric field gradient at 200 kHz, related to the diffusion
coefficient via (7.21). In the same sense as heating of a harmonic mode, this indicates the
level of noise arising from either fluctuations on the trap surface or stray voltages on the trap
electrodes (see Sec. 5.3). However, we can also study the relationship between noise spectral
density and diffusion more thoroughly by injecting additional voltage noise onto the trap
electrodes. It is most convenient to do this in a way that ensures that the average electric
field vanishes, 〈E〉 = 0. While diffusion is insensitive to the electric field, a noisy field will
cause heating of COM vibrational modes of the crystal, making measurements more difficult.
We ensure that we create a noisy gradient alone by adding a noisy voltage onto one of the
two AWG input channels of the rotation circuit. By design, this distributes the voltage onto
the DC electrodes such that it produces only a quadrupole field, with vanishing dipole field.

Noise injection circuit

The circuit used to inject noise onto the DC electrodes for diffusion is shown in Fig. 7.8. Noise
is sourced from a separate arbitrary waveform generator, which generates white noise at an
arbitrary amplitude. This is passed through a tunable bandpass filter before being input into
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Figure 7.9: Measured diffusion coefficient with various amplitudes of noise injected. Here
the ion crystal rotates at 153 kHz and has a radius of 2.1 µm.

the rotation circuit. The bandpass filter is supplemented with a low-pass filter at 500 kHz
because the inductor within the bandpass filter becomes capacitive at high frequencies.

The RLC bandpass filter uses a manually tuned variable capacitor to tune the center
frequency, given by 1/

√
LC. The capacitance ranges between 18 and 300 pF, which with

the 6.8 mH inductor can produce center frequencies between 110 kHz and 450 kHz. The
bandwidth is equal to R/L and is therefore independent of the capacitance, allowing for
tuning of the center frequency while leaving the bandwidth constant. When also connected
to the finite input impedance of the rotation circuit, the bandpass filter bandwidth is 19 kHz.

For switching, relay switches are chosen to physically disconnect the rotation AWG during
noise injection, and to disconnect the noise circuit at all other times. This is helpful due to
the relatively high input impedance of the rotation circuit (3.3 kΩ), which would significantly
reduce the effectiveness of the noise injection if the noise circuit were to be also connected to
a 50 Ω load. The relays are Sensata Technologies Cynergy3 S2-03P reed relays, and respond
within 300 µs when closing and 100 µs when opening. They are controlled by the pulser and
connect the noise circuit to the rotation circuit for diffusion measurements only during the
wait time between rotational state preparation and the Ramsey measurement.

Amplitude dependence

To tune the amplitude of the injected quadrupole noise, we set the amplitude of the white
noise generated by the noise AWG. The amplitude of the voltage reaching the electrodes will
be smaller by some factor due to filtering, but will be proportional. Since the power spectral
density is proportional to the voltage amplitude squared, we expect the diffusion coefficient
to go as the square of the injected noise amplitude. Figure 7.9 shows that this is the case.
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Figure 7.10: Measured diffusion coefficient with various center frequencies of injected noise,
with the rotation frequency and amplitude held constant. Here the ion crystal rotates at
144 ± 2 kHz. Vertical bands indicate ωrot and 2ωrot, including variation in the rotation
frequency. A Lorentzian lineshape centered at 2ωrot and with bandwidth equal to that of
the noise injection circuit, 19 kHz, is also shown for reference.

The fit is offset by 2.2 ~2/ms, the diffusion coefficient in the absence of noise. The noise
injection circuit allows us to increase the diffusion coefficient by several orders of magnitude.

Frequency dependence

We can observe the diffusion resonance at 2ωrot by using the tunable bandpass filter to tune
the center frequency of the noise injected while keeping its amplitude constant. We also
keep the rotation frequency constant. This changes the noise spectral density at the rotation
frequency: When the noise center frequency is equal to 2ωrot, SE(2ωrot) is maximized and
the rotor sees the most diffusion-inducing noise, while when the noise is centered off the
rotor resonance, SE(2ωrot) is smaller and the diffusion coefficient is reduced. Measurements
of diffusion coefficient as a function of injected noise center frequency, holding the rotation
frequency and noise amplitude constant, are shown in Fig. 7.10. The rotation frequency
is 144 ± 2 kHz. The data agrees well with a Lorentzian centered at 2ωrot, confirming that
the appropriate resonance frequency for diffusion is at 2ωrot. The lower limit of diffusion
coefficient of about 20 ~2/ms in this measurement is possibly due to the ambient noise floor.

7.3.6 Rotational friction

By the fluctuation-dissipation theorem, diffusion may in general be accompanied by friction.
When coupled to a thermal bath at temperature T , the rate of angular momentum slowing
due to friction f is related to the diffusion coefficient by D = kBTIf [44], where I is the
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Figure 7.11: Measurements of rotational friction, with and without noise injected.

rotor’s moment of inertia. Figure 7.11 shows measurements of the rotation frequency as a
function of wait time after rotational state preparation, with and without noise injection. The
rotation frequency is measured by measuring the center frequency of the ∆` = 3 sideband,
and inferring ωrot as 1/3 of this frequency. In both cases, no observable slowing is measured
over 100 ms. These measurements bound the rate of angular momentum slowing to be less
than 0.3 ~/ms, a negligible rate. The noise in our system is therefore well-approximated as
infinite temperature.

7.4 Rotational decoherence due to angular

momentum diffusion

7.4.1 Theory: Orientational decoherence

The full quantum dynamics of a rotor under angular momentum diffusion, when induced
by interaction with a Markovian environment, are best described by a Lindblad master
equation. Development of the theoretical treatment of such a case began within the past
decade with Ref. [46], which considered rotors undergoing random dipole-dipole interactions
with an environment. Here it was shown that the corresponding Lindblad operators are
proportional to eiθ, where θ is the operator for the rotor’s orientation. Subsequent work
has considered other specific microscopic models of environments such as background gas
collisions, and has also shown that the resulting interactions, when weak and frequent, lead
to angular momentum diffusion irrespective of the physical nature of the interaction [42, 43,
47], thus generalizing the master equations. For a general three-dimensional rotor, diffusion
is described by a tensor, whose eigenvalues are the diffusion coefficients in different rotational
directions. For the special case of a planar rotor, which has only a single diffusion coefficient
D, the Lindblad master equation can be written

ρ̇ = −i[H0, ρ] +
D

~2

(
e−iθρeiθ + eiθρe−iθ − 2ρ

)
(7.23a)
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for dipole-dipole interaction with the environment, or

ρ̇ = −i[H0, ρ] +
D

4~2

(
e−2iθρe2iθ + e2iθρe−2iθ − 2ρ

)
(7.23b)

for quadrupole-quadrupole interaction. Under these master equations, the angular momen-
tum wavefunction diffuses at a rate given by D. In addition, orientational coherences de-
cay. The density matrix element for the coherence between two orientations θ1 and θ2,
ρθ1θ2 = 〈θ1|ρ|θ2〉, evolves in the interaction picture as

ρ̇θ1θ2 = −4D

~2
sin2

(
θ1 − θ2

2

)
ρθ1θ2 (7.24a)

ρ̇θ1θ2 = −D
~2

sin2 (θ1 − θ2) ρθ1θ2 (7.24b)

for dipolar and quadrupolar interactions, respectively. One further generalization of this
theory has included considerations of friction [44].

The form of (7.24) suggests a fundamental scaling relationship: for a superposition of
orientations |θ1〉+ |θ2〉, their coherence decays at a rate proportional to the sine-squared of
half their relative angle (in the case of dipolar interaction). Indeed intuitively, we should
expect that this rate is small for small angle separations, is maximum for an angle separation
of π, and is periodic. For quadrupolar interaction, the rotor has 2-fold rotational symmetry,
so the decoherence rate is π-periodic in the angle separation rather than 2π-periodic. The
decoherence rate is also directly proportional to the diffusion coefficient. These scalings
are reminiscent of well-known decoherence rate scalings for the harmonic oscillator: For a
superposition of coherent states |α1〉 + |α2〉, the coherence decays at a rate proportional
to |α1 − α2|2 when the oscillator is “amplitude damped” (coupled to the environment by
operators a, a†) and proportional to the strength of the coupling to the environment [48,
49]. The harmonic oscillator decoherence scalings have been observed in several contexts,
including photon fields and trapped ions [50–52]. The scaling laws for rotor decoherence, on
the other hand, have not been experimentally observed prior to this work, though rotational
decoherence has been empirically observed in the context of molecular collisions [53–55]
and differential light shifts of trapped molecules [56–58]. A deeper understanding of the
decoherence of rotational systems is likely to be of use to several emerging rotor-based
quantum technologies. These include molecule-based quantum simulators [59–62], logical
qubits [63, 64], levitated nano-rotors [65–67], and torsional opto-mechanical resonators [68].

7.4.2 Diffusion-induced decoherence of the trapped-ion rotor

It can be shown that the rotor-field interaction Hamiltonian (7.19), when averaged over many
realizations, leads to the master equation (7.23b) [45]. To apply this to our experiments,
we must solve for the evolution an angular momentum superposition of order ∆`, take into
account the electronic degrees of freedom, and solve for the phase contrast, which is the
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Figure 7.12: Schematic of the intuitive picture of a ∆` angular momentum superposition
corresponding to a linearly separating superposition of orientations.

experimental measure of coherence. This derivation is given in Ref. [45], and the result is

C(T ) = exp

(
−DT

2~2
[1− sinc(2∆`ωrT )]

)
. (7.25)

This is the observable decoherence due to angular momentum diffusion. In general, the
excitation phase contrast is also be multiplied by the factor (7.4), which we omit here to
help conceptually separate this measurement artifact from the true decoherence factor.

This result has a direct connection to the rate of orientational decoherence (7.24b). To see
this, we invoke an intuitive, semi-classical picture, in which we imagine the superposition of
angular momenta to be a time-dependent superposition of orientations, separated by ∆θ(t).
This is shown in Fig. 7.12. Since the quantum of angular velocity is 2ωr, the orientations
separate at a rate 2∆`ωr. This separation is reversed by the π pulse in the center of the
Ramsey sequence, so that the superposition overlaps again at the time of the final π/2 pulse.
At all times during this process, the decoherence rate is given instantaneously by (7.24b).
Identifying the phase contrast with the coherence, we should thus expect the contrast to be
given by integrating (7.24b):

ln[C(T )] =

∫ T

0

−D
~2

sin2[∆θ(t)]dt

= −D
~2

[∫ T/2

0

sin2(2∆`ωrt)dt+

∫ T

T/2

sin2(2∆`ωrT − 2∆`ωrt)dt

]
, .

(7.26)

where in the first half of the integral the orientation separation ∆θ is increasing linearly, and
in the second half it is decreasing linearly. Carrying out this integral indeed gives exactly
(7.25). Therefore in a sense, we may say that measuring the decoherence of angular momen-
tum superpositions is a way of measuring the decoherence of orientation superpositions.

The functional form of (7.25) is a periodic oscillation of the decoherence rate about an
underlying exponential decay. The oscillation frequency is equal to the angular separation
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∆ω ≡ 2∆`ωr. Each is also shown with a corresponding reference exponential decay curve
exp(−D̃T/2).

frequency 2∆`ωr, and the average exponential decay rate constant is D/2~2, proportional to
the diffusion coefficient. It is convenient to define two rates: the rate of angular separation
∆ω = 2∆`ωr, and the diffusion coefficient expressed as a rate, D̃ = D/~2. The relative
values of these rates determine the shape of the contrast decay curve. This defines three
regimes of interest:

1. D/~2 � 2∆`ωr. Here, the diffusion rate is slow compared to the rate of angular
separation. The superposition is able to make many full rotations before decoherence
occurs, and thus the angle-dependent decoherence rate gets averaged out, leaving the
overall exponential decay as the dominant contribution:

C(T ) ≈ exp

(
−DT

2~2

)
. (7.27)

2. D/~2 ∼ 2∆`ωr. In this intermediate regime, the phase contrast “steps” down with a
period equal to that of the angular separation 2π/2∆`ωr, oscillating between instan-
taneous decoherence rates of 0 (when the orientations overlap) and D/~2 (when the
orientations are π/2 separated).

3. D/~2 � 2∆`ωr. Here, diffusion is fast enough that decoherence occurs well before the
first oscillation in the angular separation. ∆θ is thus restricted only to the small-angle
regime, and the phase contrast is given approximately by

C(T ) ≈ exp

(
−ω

2
r∆`

2DT 3

3~2

)
= exp

[
(−γT )3

]
, (7.28)
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where

γ =

(
ω2
r∆`

2D

3~2

)1/3

. (7.29)

Because the angular separation is always small in this case, the total coherence time
is longer than it would be if the system were to decohere only at the rate D/2~2, the
average over all angles. This longer coherence can be seen in Fig. 7.13, where the
decay curve for the case D̃ = 4∆ω outlasts the exponential curve exp(−D̃T/2). This
is manifested in the decoherence rate γ scaling sublinearly with the diffusion coefficient
D, γ ∼ D1/3.

Note that from (7.25), the oscillation frequency of the contrast decay is 2∆`ωr. This
matches the separation frequency of the time-dependent orientations, but it is worth noting
that this is in a sense a coincidence. Due to the two-fold symmetry of the rotor, the oscillation
frequency of the decoherence rate should in fact be twice the angular separation frequency.
However, the spin echo pulse additionally halves this frequency, bringing the overall period-
icity of the decoherence to be coincidentally equal to that of the angular separation. This is
relevant in Chapter 8 for example, where we consider a long rotational Ramsey experiment
without an echo pulse.

7.4.3 Measurements

In our experiments, diffusion is fast compared to the angular separation of the superpositions,
so the decoherence takes place in the third regime. We therefore expect to find the contrast
to decay according to (7.28). We define for our purposes the parameter γ as defined in (7.29)
to be the observable decoherence rate. Three important observable scalings emerge from the
predictions (7.28) and (7.29):

• The contrast decay profile should be an exponential decay with T 3, which notably
differs from the T or T 2 exponential decay profiles which one expects from simple
models of fast or slow dephasing, respectively.

• The decoherence rate γ should scale as ∆`2/3. This differs from the dephasing mecha-
nisms considered in Sec. 7.2, for which the decoherence rate is directly proportional to
∆`.

• The decoherence rate γ should scale as D1/3. This is a weaker scaling than the instan-
taneous decoherence rate of two separated orientations, which is directly proportional
to D.

These three observable scalings are the observable manifestation of the two fundamental
scalings encountered in (7.24b):

• ρ̇θ1θ2 ∝ sin2(θ1 − θ2). The orientation difference ∆θ = θ1 − θ2 becomes 2∆`ωrt for our
case of angular momentum superpositions, and in the small angle limit, sin2(∆θ) ≈
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Figure 7.14: Main plot: Measured decay of phase contrast for ∆` = 1, 2, and 3 rotational
superpositions. Each is shown with a fit to a function of the form C0e

−(γT )3
. The ∆` = 1

data is additionally fit to a function of the form C0e
−(γT )2

for comparison. Inset: Fitted
decoherence rates from the main plot plotted against ∆` on a log-log scale.

(∆θ)2 = (2∆`ωrt)
2. Integrating this over time gives us both the exponential T 3 decay

profile and the ∆`2/3 scaling of the decoherence rate. These two observable scalings thus
correspond directly to the sine-squared scaling of orientational decoherence (7.24b).

• ρ̇θ1θ2 ∝ D. This manifests in the γ ∼ D1/3 scaling, and is sublinear as a consequence
of the small-angle regime.

Sine-squared orientation separation scaling

Fig. 7.14 shows decoherence measurements for ∆` = 1, 2, and 3 for the same diffusion
coefficient. Each is fit to a decay curve of the form C(T ) = C0e

−(γT )3
. We find that this

function is a good description of the measured decay profile. As a further demonstration
of this agreement, the ∆` = 1 measurements are also shown with a fit to a Gaussian decay
function, C(T ) = C0e

−(γT )2
. The Gaussian decay function is clearly a poor fit in comparison.

This is an indication of the sine-squared decoherence rate with orientation separation in the
small-angle limit with orientations that are separating at a constant rate.

The inset of Fig. 7.14 additionally shows the expected scaling of the decoherence rate
with ∆`, which in orientation space translates to the rate of angular separation. Taking the
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Figure 7.15: Measured decoherence rate, as fitted to (7.30), plotted against measured diffu-
sion coefficient. The solid lines are from (7.29) for ωr = 2π × 13 Hz.

same data from the main plot, the fitted decoherence rates γ are plotted against ∆` on a
log-log scale, and the resulting scaling is consistent with γ ∼ ∆`2/3.

Diffusion coefficient scaling using noise injection

To see the scaling of rotational decoherence rate with diffusion, we artificially change the
diffusion coefficient by injecting noise. The noise is injected only in between the two π/2
pulses so that diffusion occurs when the rotor is in superposition. We repeat the measure-
ments shown in Fig. 7.14 for various amplitudes of injected noise to see the scaling. For each
noise amplitude, we perform an independent measurement of the diffusion coefficient using
the same level of noise injection. The results are shown in Fig. 7.15, where the decoherence
rate is plotted against the diffusion coefficient. Noise injection allows the diffusion coefficient
to be increased from 2 ~2/ms at ambient noise levels to 1000 ~2/ms. We are able to com-
pare the measured decoherence rates directly to (7.29), as all parameters are known. The
corresponding curves of γ vs. D for ∆` = 1, 2, and 3 are also shown, using the rotational
constant ωr = 2π × 13 Hz. We find that the data agrees with the predicted decoherence
rates across the full range of parameters explored. This additionally confirms the scaling
γ ∼ D1/3. These measurements are also presented in Ref. [45].

Unlike the measurements shown in Fig. 7.14, some of the measurements in Fig. 7.15 have
long enough coherence times that they are affected by the contrast oscillation effect discussed
in Sec. 7.1.2. Thus, in general, we do not fit the contrast decay profile to a function of the
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Figure 7.16: Measurements of decoherence rate as a function of rotation frequency for ∆` = 1
and 4. Both sets of measurements are fit to a power law. Here, ωr = 2π×6.4 Hz (not
accounting for centrifugal corrections).

form (7.28), but rather to one which is also multiplied by (7.5). Explicitly,

C(T ) =
∣∣(a+ b) + (a− b) cos

(
∆`2ωrT

)
− 1
∣∣× exp

[
−(γT )3

]
. (7.30)

It was necessary to perform numerical simulations to account for the imperfect Rabi opera-
tions in the experiment and hence determine the correct values of the empirical parameters
a and b to use. These were determined to be (a, b) = (1, 0) for ∆` = 1, (0.0998, 0.012) for
∆` = 2, and (0.957, 0.174) for ∆` = 3. Accounting for the contrast oscillation effect was
crucial for properly extracting the decoherence rate γ from the measurements. The data
shown in Fig. 7.3(b) are in fact the decay curves from the same four ∆` = 3 data points
shown in Fig. 7.15.

Decoherence rate scaling with rotation frequency

Figure 7.16 shows measurements of the decoherence rate γ as a function of the rotation
frequency. This effectively changes the frequency of electric field gradient noise that the
rotor is sensitive to. The measured decoherence rates are consistent with a power law of
γ ∼ ω

−1/3
rot . This scaling would be expected if the noise power spectral density has a 1/f

frequency scaling, i.e. SE(ω) ∼ ω−1, in the range between 200 kHz and 700 kHz. These
measurements do not have corresponding diffusion measurements to confirm this, but it is
a reasonable expectation, as a 1/f frequency scaling is often a good model of surface noise.
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In this case, the diffusion coefficient would scale as D ∼ SE(2ωrot) ∼ ω−1
rot, and since the

decoherence rate γ scales as γ ∼ D1/3, we would expect γ ∼ ω
−1/3
rot , as observed.

In these measurements, the horizontal secular frequency is relatively small, ωx = 2π ×
0.85 MHz, so that centrifugal effects have some role. The ratio (ωrot/ωstretch)2 ranges between
0.5× 10−2 and 5.7× 10−2 for rotation frequencies ranging between 100 kHz and 350 kHz, so
that the rotor radius differs by about 5% across these measurements. This might appear
to be a confounding factor, as an increased rotor radius increases sensitivity to noise and
increases the diffusion coefficient (7.21), and also lowers the rotational constant ωr and hence
also lowers the rate of angular separation in a rotational superposition. However, these two
effects increase and decrease the decoherence rate, respectively, and in fact exactly cancel;
this is considered more quantitatively in the following subsection.

7.4.4 Ways to improve rotational coherence

The measurements presented in this section have demonstrated that rotational coherence in
our trapped-ion rotor is limited by angular momentum diffusion. Furthermore, the theo-
retical derivation of the effect of diffusion on rotational coherence has shown how diffusion-
limited rotational decoherence scales with various parameters. This is given directly by
(7.29). The scalings are

γ ∼ ∆`2/3 ω2/3
r D1/3. (7.31)

To inform how to improve rotational coherence, this is more conveniently written in terms
of experimentally accessible parameters.

• The rotational constant scales with the secular trap frequency as ωr ∼ ω
4/3
x .

• The diffusion coefficient D scales with the rotor radius as r4, and directly with the
power spectral density at twice the rotation frequency SE(2ωrot).

– The rotor radius is set by the trap frequency and scales as r ∼ ω
−2/3
x .

– If the noise power spectral density scales as 1/f , then SE(2ωrot) ∼ ω−1
rot.

In a remarkable coincidence, the overall scaling of the decoherence rate with trap frequency
cancels: the ωr contribution gives γ ∼ ω

8/9
x , and the D contribution gives γ ∼ ω

−8/9
x . We are

left with
γ ∼ ∆`2/3 ω

−1/3
rot . (7.32)

This assumes that the noise which causes diffusion is surface-limited and scales with 1/f ; in
general, lowering the noise amplitude or changing to a rotation frequency where the spectral
density is lower will improve coherence times.
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Beyond the small-angle regime

The above analysis holds only in the regime where the decoherence occurs while the sepa-
ration angle of the superposition remains small. In the limit of long coherence times such
that the angular dependence of the instantaneous decoherence rate averages out, the co-
herence decay curve approaches a simple exponential decay, as seen in Fig. 7.13. Here, the
decoherence rate becomes independent of the rate of angular separation, so that there is no
dependence on ∆` or ωr, and becomes directly proportional to the diffusion coefficient D:

γ ∼ D. (7.33)

As above, since D ∼ r4SE(2ωrot), translating this scaling into practical parameters, we have

γ ∼ ω−8/3
x ω−1

rot, (7.34)

assuming a 1/f noise power spectral density. In this regime, coherence time does not de-
pend on ∆` since the separation angle of the superposition undergoes many full rotations.
Coherence time is improved with increasing trap frequency due to the rotor’s quadrupole
moment being lowered.

The more general case, including the intermediate regime which connects the limits of
short and long coherence times, is considered further in Sec. 8.4.2.
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Chapter 8

The trapped-ion rotational
interferometer

This chapter discusses a proposal for an experiment to use the trapped-ion rotor as a ro-
tational interferometer. In particular, we propose physically realizing a particle exchange
operation. A rotational superposition can be used to create an effective superposition of ori-
entations separated by ∆θ = π, where the ions’ positions are superposed with their mutual
particle-exchanged state. If the ions are identical, this state should produce an interferomet-
ric signal whose phase depends on the exchange symmetry, i.e. whether the ions are bosons
or fermions. This would allow for observation of exchange symmetry, and the corresponding
exchange phase, by way of a direct physical particle exchange. Furthermore, this would be
done without ever directly overlapping the particles over each other.

8.1 Identical quantum particles and exchange

symmetry

The symmetrization postulate of quantum mechanics states a system of particles is subject
to a constraint which is present if and only if the particles are identical: their collective
wavefunction must satisfy exchange symmetry, such that when any pair of particle indices is
swapped, the wavefunction remains unchanged up to an overall phase factor eiφex . In usual
three-dimensional space, the exchange phase φex must be only 0 or π, classifying all quantum
particles as either bosons (φex = 0) or fermions (φex = π) [69].

The constraints placed by exchange symmetry, including the resulting quantum statis-
tics, have manifestations which are central to common systems. Effects such as the Pauli
exclusion principle explain the stability of atoms and nuclei, and manifest in many sys-
tems including the orbitals of multi-electron atoms and the Fermi sea in solid-state systems.
More direct observations of exchange symmetry include experiments with ultracold quan-
tum gases, manifesting in exotic states such as Bose-Einstein condensates and superfluids
[70]. Still more direct observations include experiments with systems of only a few identical
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particles, including Hong-Ou-Mandel interference experiments [71–74], experiments measur-
ing the Hanbury Brown and Twiss effect [75–79], and experiments measuring the rotational
spectra of homonuclear diatomic molecules [80]. High-precision searches for violations of
the symmetrization postulate have also been performed using spectroscopic measurements
[81–85].

The experiment proposed in this chapter combines two key features which makes it
unique: (1) The particles remain well-separated at all times, and (2) The protocol allows
for a direct measurement of the exchange phase φex. Such an experiment was first proposed
in Ref. [86]. Most past experiments which have aimed at direct observation of symmetriza-
tion attempt to bring the particles into the same physical location, and measure either the
bunching or antibunching which results from their bosonic or fermionic quantum statistics.
The exception is measurements of the rotational spectra of homonuclear diatomic molecules,
whose nuclei remain separated as they rotate. However, the nuclei in these experiments are
within 1 nm distance from each other, so that the molecular orbitals of the valence electrons
strongly overlap. In the present experiment, on the other hand, the ions would be separated
be several micrometers, and their respective valence electrons would not interact. Further-
more, no past experiment has performed a direct measurement of the exchange phase, with
the recent exceptions of Refs. [87, 88]. However, these experiments involved overlapping
identical photons onto a beamsplitter, and thus did not involve distant particles.

Concepts pertaining to identical particles, exchange symmetry, and indistinguishability
defy intuition in several ways, and thus are often confounded with each other or otherwise
confused [89]. Much of the remainder of this section is therefore devoted to precisely defining
these concepts as they relate to the case of our system, in order to facilitate a careful
interpretation of our proposed experiment in the context of particle symmetrization.

8.1.1 The symmetrization postulate

To aid the discussion of exchange symmetry as it pertains to our trapped-ion rotor, it is
helpful to lay out explicitly what the symmetrization postulate states and what it does not.
For simplicity, consideration is restricted to only two identical particles. This discussion
borrows largely from lecture notes written by Prof. Robert Littlejohn [90].

Any two-particle Hamiltonian for identical particles is said to possess exchange symmetry
if swapping the particle labels leaves it unchanged. For the trapped-ion rotor, this is most
clearly seen in the Hamiltonian for the motion of the two ions written in terms of the
individual ions’ coordinates (3.9), repeated here for convenience:

H =
p2

1

2m
+

p2
2

2m
+

1

2
mω2

x(x
2
1 + y2

1 + x2
2 + y2

2) +
1

2
mω2

z(z
2
1 + z2

2) +
e2

4πε0|r1 − r2|
. (8.1)

This Hamiltonian manifestly possesses exchange symmetry.
We may define an exchange operator E12 that swaps the particle labels 1 and 2 of the

Hamiltonian. E12 has the property that E2
12 = 1, the identity operation. It has two eigen-

values, ±1. Because the Hamiltonian possesses exchange symmetry, it commutes with the
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exchange operator: [H,E12] = 0. It is thus possible to define a simultaneous eigenbasis of
H and E12. In this eigenbasis, all energy eigenstates |ψ〉 may be classified by their exchange
eigenvalue: either E12 |ψ〉 = |ψ〉 (even under exchange), or E12 |ψ〉 = − |ψ〉 (odd under
exchange). We may thus define two mutually orthogonal subspaces of the Hilbert space:
the subspace spanned by all the exchange-even eigenstates, and that spanned by all the
exchange-odd eigenstates. All states within the even subspace are even under exchange, and
all states within the odd subspace are odd under exchange. Linear combinations of states
between the even and odd subspaces do not possess exchange symmetry. Time evolution un-
der the exchange-symmetric Hamiltonian cannot map any even state into the odd subspace,
nor any odd state into the even subspace.

The considerations thus far are consequences of ordinary quantum mechanics, unrelated
to the symmetrization postulate. Rather, the symmetrization postulate makes an additional
assertion, which cannot be derived from the above: Only one of the two exchange subspaces
is physical, and states in the other subspace simply may not be occupied by a real system.
Which subspace is physical depends on the particle: particles which may only occupy the even
subspace are bosons, and particles which may only occupy the odd subspace are fermions.
In nonrelativistic quantum mechanics this must be taken as an additional postulate, though
in relativistic quantum field theory it is a direct consequence of simpler postulates. It may
in fact be considered a failure of nonrelativistic quantum theory that it is even possible to
define states which do not exist due to being of the wrong exchange subspace, and hence
necessitating an additional postulate to exclude them. For our purposes it is most helpful
to think in terms of ordinary nonrelativistic quantum mechanics, where we must remember
to impose the symmetrization postulate onto the state of systems we consider. As a sum-
mary, the symmetrization postulate is a constraint only on the state of a system of identical
particles, and is not a statement about its Hamiltonian.

8.1.2 Interpreting the concept of “indistinguishability”

In some contexts, it is said that all particles which are identical to each other are uncondition-
ally indistinguishable as a result of the symmetrization postulate, because a symmetrized
wavefunction prohibits any measurement which distinguishes one particle label from any
other. In other contexts, it is said that identical particles must be “made” indistinguishable
from one another, for example in Hong-Ou-Mandel interference experiments, where degrees
of freedom such as the timing and polarization of the photons must tuned by the experi-
menter in order to observe the relevant indistinguishability signal. This presents an apparent
paradox: If the symmetrization postulate imposes that identical particles are fundamentally
always indistinguishable, why is it ever necessary to engineer special conditions to “make”
them indistinguishable? Or on the other hand, we often need not consider particle sym-
metrization when considering typical quantum systems; why not? What defines when we
can and cannot neglect particle symmetrization?

The answer lies in the fact that real quantum systems have many degrees of freedom, and
the symmetrization postulate applies only to the exchange of all degrees of freedom simulta-
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Figure 8.1: (a): Two identical particles sharing the same spin enter a beamsplitter in a Hong-
Ou-Mandel-type interference experiment. At the output, the particles are indistinguishable
and the probabilities at the output port may interfere due to symmetrization. (b): The
particles entering the beamsplitter have different spins. They are thus distinguishable at the
output, and do not exhibit interference behavior resulting from symmetrization.

neously. We typically measure only some subset of the degrees of freedom of a system, often
only one. Figure 8.1 considers the example of a Hong-Ou-Mandel interference experiment,
where we suppose we are interfering massive particles (to avoid requiring second quantiza-
tion) undergoing an effective beamsplitter interaction. The interference of the interaction
occurs in the positional degree of freedom, with the particles having input ports |A〉 and |B〉,
but the particles also have an auxiliary spin degree of freedom with states |↑〉 and |↓〉. In
Fig. 8.1(a), the particles share the same spin state. When we impose symmetrization on the
input state of the two particles, we are thus able to factor out the spin degree of freedom,
and the positional terms interfere. The output state involves a linear transformation of the
positional degree of freedom only, and thus may result in a constructive or destructive inter-
ference of the two terms which are present due to imposing symmetrization. In Fig. 8.1(b),
the particles have two different spins, and the positional terms from the symmetrization no
longer factor out from the spin degree of freedom. This prevents interference of the output
states, washing away any effects which would arise from particle identity.

In this example, the total wavefunction of the two particles is symmetrized in both cases,
but the consequences are only observable if all degrees of freedom other than that being
measured are in the same state. This highlights the relationship between symmetrization and
indistinguishability : in intuitive language, if the particles have a distinguishing feature such
as a different spin, then one could use the spin at the output ports to identify which particle
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went in which direction. It is also the case that under these conditions, no interference occurs
so that symmetrization is not observable. Only when the particles share all other degrees of
freedom, so that their output state cannot be traced back to the individual input particles,
does symmetrization manifest observably (as constructive or destructive interference at the
output port in this example).

This example also highlights the important difference between particle indices (the sub-
scripts 1 and 2) and classical particles, which correspond to localized wavefunctions (the
input states |A〉 and |B〉). Classical particles are emergent observable entities, while the
indices are mathematical bookkeeping tools. Many apparent paradoxes in matters of sym-
metrization arise from a confusion between these two distinct uses of the term “particle”.
Importantly, symmetrization applies only to the indices [89]. For example, it might appear at
first possible to break the exchange symmetry of a Hamiltonian, e.g. (8.1), by applying a field
at the location of one particle and not the other. However, this breaks the symmetry only
of the localized states; the particle labels can never be isolated and individually addressed.
Exchange symmetry of the Hamiltonian of identical particles is thus always preserved.

In summary, the relationship between symmetrization and indistinguishability is the fol-
lowing: If a pair of identical particles is distinguishable in some way, then there are no
observable consequences to symmetrization. If they can be made indistinguishable in some
way, i.e. by interfering them on a beamsplitter and ensuring all other degrees of freedom are
identical, then symmetrization may result in interference which is measurable. More gener-
ally, the other degrees of freedom need only be in a state of well-defined exchange symmetry.
For our purposes, particle indistinguishability is defined by a measurable manifestation of
particle symmetrization. While symmetrization is always present, it does not always have
measurable consequences.

8.2 Making trapped ions indistinguishable in a

quantum rotor

In this section, it is shown that exchange symmetry is not observable in a typical vibrational
two-ion Coulomb crystal, but that it can be observed in a two-ion rotor. In other words, the
ions in the vibrational crystal remain practically distinguishable, but those in the rotor can
be made indistinguishable. It is also shown how one situation transitions into the other.

The strategy here for identifying how symmetrization is relevant for a system will be
to identify the two subspaces of the exchange operator, and to consider the consequences
of eliminating one or the other. As discussed in the previous subsection, the exchange
operator shares a simultaneous eigenbasis with the Hamiltonian, so the goal is to identify
the appropriate diagonalization of the Hamiltonian.
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8.2.1 Symmetrization of a pinned two-ion crystal

We begin with the Hamiltonian for the ions’ motion,

H =
p2

1

2m
+

p2
2

2m
+

1

2
mω2

x(x
2
1 + x2

2) +
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mω2

y(y
2
1 + y2

2) +
1

2
mω2

z(z
2
1 + z2

2) +
e2

4πε0|r1 − r2|
, (8.2)

where ωx 6= ωy 6= ωz. We define the center-of-mass and relative coordinates and momenta
R,P and r,P by

R =
r1 + r2

2
, P = p1 + p2

r = r1 − r2, p =
p1 − p2

2
.

(8.3)

The Hamiltonian cleanly divides into two terms H = HCOM + Hrel, which respectively
contain only center-of-mass coordinate terms and only relative coordinate terms. Any eigen-
function of the Hamiltonian may therefore be written as a product state of a state of the
relative motion:

Ψn(r1, r2) = ψCOM
n (R)ψrel

n (r), (8.4)

where n stands for all the quantum numbers of the particular eigenstate in question. The
exchange operator E12 performs the operation r1 → r2 and r2 → r1 and similar for the
momenta. In the COM and relative coordinates, we see from (8.3) that this operation is
R → R and r → −r. Particle exchange leaves the center-of-mass coordinate unchanged,
and is equivalent to a parity operation in the relative coordinates. Thus

E12Ψn(r1, r2) = ψCOM
n (R)ψrel

n (−r). (8.5)

Symmetrization thus only constrains the wavefunction of the relative coordinates, which
must satisfy ψrel

n (−r) = ±ψrel
n (r). The ± sign here is fully determined by whether the ions

are bosons or fermions, and the COM wavefunction plays no role in symmetrization.
We know that an eigenfunction of the relative coordinates can be broken into a product

of eigenfunction of the three individual differential modes: stretch, vertical rocking, and
horizontal rocking. To see how symmetrization constrains these, it is most useful to use
cylindrical coordinates (ρ, θ, z). This formulation also aids in later comparing to the case
of ions in a rotor. Written this way, the stretch mode wavefunction is a function of ρ, the
vertical rocking mode is a function of z, and the horizontal rocking mode is a function of θ.
The relative coordinate potential is

Φrel =
1

2
µρ2(ω2

x cos2 θ + ω2
y sin2 θ) +

1

2
µω2

zz
2 +

e2

4πε0
√
ρ2 + z2

, (8.6)

where µ = m/2 is the reduced mass. This potential is plotted in Fig. 8.2(a) within the
xy-plane. There are two potential minima: one with x > 0 (ion 1 on the right), and one
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Figure 8.2: Exchange symmetry of the eigenfunctions of the relative modes of a pinned
two-ion crystal. (a): The potential (8.6) in the xy plane, shown with slices along the cylin-
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eigenfunctions, and how they transform under exchange. Exchange-even eigenfunctions are
shown in gold, and exchange-odd eigenfunctions are shown in blue. (d) shows two different
bases: |0L,R〉 and |0±〉, the former of which do not possess exchange symmetry. For each, an
eigenspectrum is also shown, with each state color coded by its exchange symmetry.
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with x < 0 (ion 1 on the left). As we shall see, this degeneracy is directly related to the two
ions being practically distinguishable.

We can now analyze the exchange symmetry of the three relative modes. In cylindrical
coordinates, the exchange operation r→ −r performs the coordinate change

(ρ, θ, z)
E12−−→ (ρ, θ + π,−z). (8.7)

Figure 8.2(b-d) shows how a few example eigenfunctions of each mode transform under
particle exchange, plotted along the slices shown in Fig. 8.2(a). Each subfigure also identifies
which are even and which are odd under exchange.

• Stretch mode (Figure 8.2(b).) In cylindrical coordinates, the stretch mode is de-
fined along the coordinate ρ, which is strictly positive. ρ is invariant under exchange
symmetry, so all eigenfunctions of the stretch mode are even under exchange:

E12 |ns〉 = |ns〉 . (8.8)

• Vertical rocking mode (Figure 8.2(c).) This mode is centered at z = 0, so the
exchange operation, which performs z → −z, is equivalent to a parity operation. Even-
valued harmonic oscillator eigenfunctions are even under parity, and the odd-valued
eigenfunctions are odd under parity. Thus the same applies to the vertical rocking
mode eigenfunctions under exchange:

E12 |nvr〉 = (−1)nvr |nvr〉 . (8.9)

.

• Horizontal rocking mode (Figure 8.2(d).) The two-fold degeneracy manifests in the
horizontal rocking mode. The sine-squared potential has two minima, so that we may
define a ground state wavefunction in either one: at θ = 0 we have particle 1 on the
right and particle 2 on the left, and at θ = π we have the reverse. We label these |0R〉
and |0L〉, respectively. These wavefunctions do not possess exchange symmetry; rather,
they transform into each other under exchange. The appropriate basis for considering
exchange symmetry is instead |0±〉 = |0L〉 ± |0R〉. |0+〉 is even under exchange, and
|0−〉 is odd under exchange. The same holds for all excited states: |nhr+〉 is even and
|nhr−〉 is odd under exchange, regardless of whether the integer nhr itself is even or
odd:

E12 |nhr±〉 = ± |nhr±〉 . (8.10)

The symmetrization postulate constrains the overall wavefunction to be either odd or
even under exchange. Including all relative modes,

E12 |ns, nvr, nhr±〉 = ±(−1)nvr |ns, nvr, nhr±〉 . (8.11)
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Since 40Ca+ ions are fermions, for example, the total wavefunction must be odd under ex-
change, constraining ±(−1)nvr = −1. The COM and stretch modes play no role, but the
two rocking modes are relevant. If for example they are in their collective ground state, that
state must be |nvr〉 |nhr〉 = |0〉 |0−〉. If on the other hand the vertical rocking mode is in the
first excited state, then the collective state must be |1〉 |0+〉. If 40Ca+ ions were bosons, these
states would instead be |0〉 |0+〉 and |1〉 |0−〉, respectively. However, the states |nhr+〉 and
|nhr−〉 are for all practical purposes identical to each other, with the same energy and same
probability distribution1. Thus in a sense, the consequences of symmetrization “hide” away
in this degeneracy, such that the exchange-even and exchange-odd subspaces are nearly en-
tirely identical. Because of this, symmetrization of this system is inconsequential, and thus
the ions always remain practically distinguishable.

Note that in principle, using a different choice of coordinates we could have assigned the
two-fold degeneracy to a different mode in the case of a pinned crystal. However, the overall
result (8.11) would be the same. Assigning the degeneracy to the horizontal rocking mode
is most natural when considering the transition to a free rotor.

8.2.2 Symmetrization of a two-ion rotor

We now consider the case of two ions in a rotor potential. The Hamiltonian is given by
(8.1). We may again disregard the COM coordinates, and consider the relative motion in
cylindrical coordinates. The corresponding potential is

Φrel =
1

2
µω2

xρ
2 +

1

2
µω2

zz
2 +

e2

4πε0
√
ρ2 + z2

, (8.12)

plotted in Fig. 8.3(a). Performing a similar analysis to the case of two pinned ions, we
find the same results for the stretch and vertical rocking modes, i.e. (8.8) and (8.9). The
horizontal rocking mode is now replaced by the rotational mode.

• Rotational mode (Figure 8.3(b).) The potential in the coordinate θ is flat, and the
eigenfunctions are ei`θ. Applying the exchange operation θ → θ + π, these become
ei`(θ+π) = ei`πei`θ = (−1)`ei`θ. Thus

E12 |`〉 = (−1)` |`〉 . (8.13)

Even angular momenta are even under exchange, and odd angular momenta are odd
under exchange. Figure 8.3(b) shows the rotor eigenspectrum color coded by exchange
symmetry. In contrast to the case of pinned ions seen in Fig. 8.2(d), we see that here,
the even and odd eigenfunctions have distinct energies. Symmetrization therefore in
principle has observable consequences: distinguishable particles, bosons, and fermions
will have distinct eigenspectra from each other.

1Strictly speaking, |nhr+〉 has a very slightly lower energy than |nhr−〉, but this difference is vanishingly

small. In the WKB approximation, the splitting between |0+〉 and |0−〉 is ∼ e−r
√

mΦ0
pin/~ ∼ exp

(
−105

)
times the energy difference between |0+〉 and |1+〉 [91].
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Figure 8.3: (a): The potential (8.12) in the xy-plane. (b): The potential as a function of
θ along the equilibrium radius, example eigenfunctions |` = 2〉 and |` = 3〉, and how they
transform under particle exchange. Only the real part of the wavefunctions is shown. At
the right, an eigenspectrum of the rotational motion is shown, color coded by exchange
symmetry.

Explicitly, the exchange operation of a total (relative coordinate) eigenfunction is

E12 |ns, nvr, `〉 = (−1)nvr+` |ns, nvr, `〉 . (8.14)

As discussed in Sec. 8.1.2, in order for symmetrization to manifest in a particular degree
of freedom, all others should have well-defined exchange symmetry. If the vertical rocking
mode is in a state of well-defined exchange symmetry, then symmetrization eliminates either
all rotational states with even |`〉 (fermions) or odd |`〉 (bosons). We propose to observe this
via a rotational Ramsey experiment which measures revivals depending on which angular
momentum states are occupied, detailed in Sec. 8.3. To make symmetrization manifest in
the rotational mode, it suffices to cool the vertical rocking mode to its ground state, which
is already done in our experiments.
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Figure 8.4: Eigenenergies in the rotor potential Φ0
pin sin2 θ plotted as a function of the po-

tential height Φ0
pin. To the left and right, in the two limits of small and large Φ0

pin, the
corresponding eigenspectra are shown as energy levels. Each is color coded by exchange
symmetry: even (gold) or odd (blue), which corresponds to the particles being bosons and
fermions (assuming that the vertical rocking mode is in an exchange-even state; the opposite
holds if it is in an exchange-odd state). The dashed line indicates where the x- and y-axes
are equal.

8.2.3 The transition from distinguishable to indistinguishable

The difference between the case of a pinned and freely rotating two ion rotor is entirely in
the angular coordinate θ. Comparing Figs. 8.2(d) and 8.3(b), we see that these two different
potentials produce eigenspectra with qualitatively different exchange-symmetry characteris-
tics. To understand how on transforms into the other, we may look at the eigenspectrum
as a function of the potential height Φ0

pin, i.e. where the potential in the angular coordi-
nate is Φpin(θ) = Φ0

pin sin2 θ. This is shown in Fig. 8.4. Each energy level is color coded
by exchange symmetry, and we can see that on the right, the eigenspectrum matches that
shown in Fig. 8.2(d), and on the left it matches that shown in Fig. 8.3(b). At large Φ0

pin,
symmetrization has no observable consequence, so the ions remain distinguishable. At zero
Φ0

pin, symmetrization strongly changes the energy eigenspectrum, so the ions can be indistin-
guishable. As the potential is lowered, the degeneracy between the harmonic oscillator states
|nhr±〉 is lifted, and they split and map onto rotational states of different angular momenta.
The transition happens approximately when the potential height equals the energy of a given
state. This corresponds to the point at which eigenfunctions are no longer localized.

It is interesting to note this is a way of seeing symmetrization without requiring that the
particles ever occupy the same space, unlike e.g. in Hong-Ou-Mandel interference [86]. It
suffices that the two ions share a potential in which their positions may exchange, but they
need not actually coincide at any time.

This section has shown that the rotational energy eigenspectrum differs depending on
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whether the ions are bosons or fermions. Because it is also nonlinear, the transition spectrum
also differs depending on particle identity. The following section details the protocol by which
we propose to measure the transition spectrum in a way that can distinguish between the
three cases of unsymmetrized particles, bosons, and fermions.

8.3 The measurement protocol

The proposal is to perform a Ramsey experiment on a rotational sideband ∆`, without a spin-
echo pulse. As discussed in Sec. 6.5.1, the resulting dynamics are a dephasing of the electronic
state. The position-space interpretation of this process is that the states in superposition
separate from each other, and electronic state contrast is lost when they no longer overlap.
If the coherence lasts long enough, the superposition will return to its initial state (in the
rotating frame) after a 2π relative rotation, and a rephasing in the electronic degree of
freedom should be expected. In addition, after only a π relative rotation, the two ions will
have exchanged positions. Here, a rephasing should be expected if and only if the ions are
indistinguishable, and the phase should depend on whether the ions are bosons or fermions.
Unlike a purely mathematical exchange operation, this physical exchange operation will also
come along with dynamical and geometric phases [92], which we must thus also account for.

To show this more concretely, we first consider position space to build intuition, and then
show formally how the rephasing occurs.

8.3.1 The intuitive picture: position space

The position-space picture of a superposition of angular momenta which differ by ∆` is a
time-dependent superposition of orientations, with angular separation ∆θ(T ). The separa-
tion increases linearly with time at a rate equal to the difference in angular velocity, so that
∆θ(T ) = 2∆`ωrT . A full 2π relative rotation occurs when ∆θ = 2π. We define this time as
the revival time Trev:

Trev =
π

∆`ωr
. (8.15)

For typical parameters, this time is roughly 10 ms. We should thus expect a rotational
superposition to rephase at time Trev unconditionally (provided sufficient coherence). At
time Trev/2, ∆θ = π, and the ions have exchanged positions. Here we should expect an
additional rephasing, which in this case is conditioned on the ions being indistinguishable.
In other words, if the ions are in some sense distinct particles, then they may interfere with
themselves, but not with each other.

In reality, we create a superposition of three different rotational states: |`〉, |`+ ∆`〉, and
|`+ 2∆`〉. Thus if we instead measure the coherence between |`〉 and |`+ 2∆`〉, the uncondi-
tional revival should occur at time Trev/2, and the revival conditioned on indistinguishability
should occur at time Trev/4. Figure 8.5 schematically shows the position-space picture at
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Figure 8.5: Schematic of the exchange experiment in position space, shown in a frame co-
rotating with a reference angular momentum state |`〉, with each ion labeled 1 or 2. At
different times, ions in different combinations of the three superpositions have either made
a full 2π relative rotation, exchanged positions, or neither.

the three times of interest Trev/4, Trev/2, and Trev. Each ion is given a label 1 or 2 as a guide
to see when they have been exchanged and when they have not.

• At Trev/4, the |`+ 2∆`〉 state has rotated by π and thus the ions are exchanged relative
to the |`〉 state. The |`+ ∆`〉 state, on the other hand, has rotated by π/2 and thus
does not overlap with the others.

• At Trev/2, the |`+ 2∆`〉 state has rotated by 2π and is thus back at the original
position, while the |`+ ∆`〉 state has rotated by π, exchanging the ions.

• At Trev, the |`+ ∆`〉 state has rotated by 2π and the |`+ 2∆`〉 state has rotated by
4π. The ions are back to their original positions in all three states, and there is no
exchange.

As we shall see in Sec. 8.3.2, we choose which of the two coherences we are observing
depending on the choice of observable: the excitation measures the ∆` coherence, and the
parity measures the 2∆` coherence.

It should be noted that the picture of separating states with well-defined orientations
is not quite correct, as the wavepacket does not stay localized in a free rotor but rather
disperses. There are however revivals in the localization at the appropriate relative orien-
tations, and the intuition afforded by this picture indeed corresponds to the results when
considering the time evolution more formally.

8.3.2 The formal picture

The experimental sequence

The full measurement protocol is as follows:
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1. The rotor state is prepared as usual, such that it begins in a distribution of angular
momenta defined by coefficients c`: |ψrot〉 =

∑
` c` |`〉. The mean of this distribution

is large enough to create resolved rotational sidebands, and the standard deviation is
narrow enough to allow for high-fidelity operations on the rotational sidebands. The
initial state of the electronic and rotor degrees of freedom is

∑
` c` |SS, `〉. Importantly,

the vertical rocking mode has also been sideband cooled to its ground state.

2. A π/2 pulse is applied on the ∆` sideband, which performs the operation∑
`

c` |SS, `〉
π/2−−→

1

2

∑
`

c`
[
|SS, `〉 − i |DS, `+ ∆`〉 − (−1)∆`i |SD, `+ ∆`〉 − (−1)∆`i |DD, `+ 2∆`〉

]
.

(8.16)

If we think of the initial state as a weighted ensemble of angular momentum states
`, then the π/2 pulse creates an equally-weighted superposition of the four states
|SS, `〉 , |DS, `+ ∆`〉 , |SD, `+ ∆`〉 , |DD, `+ 2∆`〉 within each member of the ensem-
ble. We then think of the state as an ensemble of four-dimensional manifolds.

3. The system freely evolves for a time T . During this time, each term acquires a phase:

|SS, `〉 → |SS, `〉
|DS, `+ ∆`〉 → eiφ1,` |DS, `+ ∆`〉
|SD, `+ ∆`〉 → eiφ1,` |SD, `+ ∆`〉
|DD, `+ 2∆`〉 → eiφ2,` |DD, `+ 2∆`〉

(8.17)

The phases φ1,` and φ2,` have been left general to allow for accounting of imperfections
and geometric phases, which are considered in more detail in Sec. 8.4.

4. A final π/2 pulse is applied on the same ∆` sideband, with phase φ relative to the
initial pulse.

Computation of the state probabilities

To compute the observable evolution of the system, we compute the time evolution operator
for the full experimental sequence. The Hamiltonian may be broken into a term for each
4-dimensional ` manifold: H =

∑
`H`, with H` is given by (6.26). Defining H`(Ω∆`) as

the Hamiltonian as a function of the Rabi frequency, the time-evolution operator for the
experimental sequence is U = Π`U`, where

U` = e−iH`(Ω∆`e
iφ)tπ/2e−iH`(0)T e−iH`(Ω∆`)tπ/2 . (8.18)
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tπ/2 is the π/2 pulse time on the ∆` sideband, and T is the Ramsey time. For the purpose
of this computation we assume perfect operations, which in practical terms means that all
detunings may be set to zero in the time-evolution operators for the π/2 pulses. Then
explicitly, in the basis {|SS, `〉 , |DS, `+ ∆`〉 , |SD, `+ ∆`〉 , |DD, `+ 2∆`〉},

U` = exp

−iπ4


0 e−iφ (−1)∆`e−iφ 0
eiφ 0 0 (−1)∆`e−iφ

(−1)∆`eiφ 0 0 e−iφ

0 (−1)∆`eiφ eiφ 0




× exp

i


0 0 0 0
0 φ1,` 0 0
0 0 φ1,` 0
0 0 0 φ2,`




× exp

−iπ4


0 1 (−1)∆` 0
1 0 0 (−1)∆`

(−1)∆` 0 0 1
0 (−1)∆` 1 0




(8.19)

Having assumed perfect operations, the problem simplifies enough that this time-evolution
operator may be computed analytically. Carrying through the computation for an initial
state |SS, `〉, we find the probabilities

| 〈SS, `|U`|SS, `〉|2 =
3

8
− 1

4
cos(φ1,` − φ)− 1

4
cos(φ2,` − φ1,` − φ) +

1

8
cos(φ2,` − 2φ)

| 〈DS, `+ ∆`|U`|SS, `〉|2 = | 〈SD, `|U`|SS, `〉|2 =
1

4
sin2

(
φ2,`

2
− φ
)

| 〈DD, `+ 2∆`|U`|SS, `〉|2 =
3

8
+

1

4
cos(φ1,` − φ) +

1

4
cos(φ2,` − φ1,` − φ) +

1

8
cos(φ2,` − 2φ).

(8.20)

The probability of observing a particular electronic state is the weighted average
of these probabilities over the angular momentum distribution

∑
` c` |`〉: PSS =∑

` |c`|
2| 〈SS, `|U`|SS, `〉|2, etc.

There are two observables of interest: the excitation and the parity, which are defined as

E =
1

2
(2PDD + PDS + PSD)

Π = PSS + PDD − PDS − PSD,
(8.21)
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giving

E =
∑
`

|c`|2
[

1

2
+

1

4
cos(φ1,` − φ) +

1

4
cos(φ2,` − φ1,` − φ)

]
(8.22a)

Π =
∑
`

|c`|2 cos2

(
φ2,`

2
− φ
)
. (8.22b)

The excitation is a function only of the phases φ1,` and φ2,` − φ1,`. φ1,` is the relative phase
between the states |`〉 and |`+ ∆`〉, and φ2,` − φ1,` is the relative phase between the states
|`+ ∆`〉 and |`+ 2∆`〉. The excitation is therefore sensitive only to the relative phases of
the ∆`-separated superpositions. The parity, on the other hand, is a function of only of the
phase φ2,`, which is the relative phase between the states |`〉 and |`+ 2∆`〉. The parity is
therefore sensitive only to the relative phase of the 2∆`-separated superposition.

Phase contrast revivals

In the absence of imperfections, the dynamical contribution (that is, excluding geometric
phases) to the free-evolution phases φ1,` and φ2,` after time T is (6.32)

φ1,` = −δ1,`T = −T∆ + ωrT (2`∆`+ ∆`2)

φ2,` = −(δ1,` + δ2,`)T = −2T∆ + 2ωrT (2`∆`+ 2∆`2),
(8.23)

with the detunings δ`,1 and δ`,2 defined by (6.27). Note that φ2,` is not exactly equal to 2φ1,`

due to the difference in transition frequencies between the transitions |`〉 → |`+ ∆`〉 and
|`+ ∆`〉 → |`+ 2∆`〉. Here we choose not to write these phases in terms of an detuning
from the center of the ∆` sideband as done in (6.34), but rather in terms of the detuning
from the carrier, ∆. The former is a convenient formulation in some cases, but the latter is
more precisely defined, which is appropriate for carefully considering the phases as we intend
do here.

The dynamical phases depend on the angular momentum `. Because the system begins
in a distribution over many angular momenta, the system dephases when placed in this
superposition, as discussed in Sec. 6.5.1. However, these phases across the different mani-
folds differ from each other by a constant (e.g. φ1,`+1 − φ1,` = 2∆`ωrT ), independent of `.
Rephasing occurs when the acquired phase differs by a multiple of 2π across all ` manifolds
which are occupied.

Table 8.1 shows the dynamical contribution to the phases φ1,`, φ2,`−φ1,`, and φ2,` at the
times Trev, Trev/2, and Trev/4. Each phase is the sum of three terms: a term proportional to
the detuning from the carrier ∆, a ∆`-dependent shift, and a term proportional to `. Only
the final term differs between ` manifolds, so only this term is relevant is considering when
a revival occurs. These terms are highlighted in Tab. 8.1. Specifically, revival occurs if the
relevant phase differs by a multiple of 2π for all ` manifolds which are occupied. Crucially,
which values of ` may be occupied depends on the symmetrization of the rotational degree
of freedom.



CHAPTER 8. THE TRAPPED-ION ROTATIONAL INTERFEROMETER 160

Ramsey
time

φ1,` φ2,` − φ1,`
Revival in
excitation?

Trev − π∆
∆`ωr

+ π∆`+ 2π` − π∆
∆`ωr

+ 3π∆`+ 2π` Yes

Trev/2 − π∆
2∆`ωr

+ π
2
∆` + π` − π∆

2∆`ωr
+ 3π

2
∆` + π`

Only if
indistinguishable
(and ∆` is even)

Trev/4 − π∆
4∆`ωr

+ π
4
∆`+ π

2
` − π∆

4∆`ωr
+ 3π

4
∆`+ π

2
` No

Ramsey
time

φ2,`
Revival in

parity?

Trev − 2π∆
∆`ωr

+ 4π∆`+ 4π` Yes

Trev/2 − π∆
∆`ωr

+ 2π∆`+ 2π` Yes

Trev/4 − π∆
2∆`ωr

+ π∆`+ π`
Only if

indistinguishable

Table 8.1: Free evolution phases at Ramsey times of interest, and whether or not they
result in a phase contrast revival for excitation (top) and parity (bottom). Unconditional
revivals are indicated by green highlighting, revivals conditioned on indistinguishability are
indicated by yellow highlighting, and non-revivals are indicated by red highlighting. Only
ideal dynamical phases (8.23) are included.
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• If the rotational degree of freedom is not symmetrized, then any integer value
of ` may be occupied. A revival then occurs only if the difference in phase between
manifolds ` and `+1 is a multiple of 2π. This occurs first at time Trev for the excitation
and at Trev/2 for the parity. At earlier times, the phases across ` manifolds are not
aligned and cancel each other.

• If the rotational degree of freedom is symmetrized, then only even values or
only odd values of ` will be occupied. We then need only for the difference in phase
between manifolds ` and `+ 2 to be a multiple of 2π for a revival to occur. This first
occurs at half the Ramsey time at which is occurs in the unsymmetrized case: Trev/2
for the excitation, and Trev/4 for the parity.

When considering the excitation, an additional constraint is present: revival at Trev/2 only
occurs if ∆` is also even. This comes from the discrepancy between the phases φ1,` and
φ2,`−φ1,`, highlighted in grey in Tab. 8.1. If ∆` is even then the discrepancy is a multiple of
2π, and the φ1,` and φ2,`−φ1,` terms of (8.22a) constructively interfere. If on the other hand
∆` is odd, then the discrepancy is an odd multiple of π, and the two corresponding terms
of (8.22a) destructively interfere. This is the same contrast oscillation effect considered in
7.1.2, defined by a profile in the excitation phase contrast given by (7.4), which is still valid
even in the absence of a spin-echo pulse. If ∆` is odd, then Trev/2 coincides with a node
of the contrast oscillation profile, so no revival is seen. It can be shown that Trev always
coincides with an antinode of the contrast oscillation profile, regardless of ∆`.

The interference signal, computed from (8.22), is plotted in Fig. 8.6. The final pulse phase
is kept constant, and a detuning from the center of the rotational sideband is added in order
to see interference fringes. The angular momentum distribution is taken to be Gaussian. The
revivals are indeed seen at the times indicated in Tab. 8.1. The width of the interference
signal in time is given by 1/γ∆`, the reciprocal of the linewidth of the ∆` sideband. This
linewidth is proportional to the width of the angular momentum distribution, so that the
narrower than angular momentum spread, the wider the interference signal in time.

Discussion

The results from this section corroborate the expectations from Sec. 8.3.1, shown in Fig. 8.5:
Unconditional revivals occur when the ions have made a full 2π relative rotation, and re-
vivals conditioned on indistinguishability occur when the ions have exchanged positions2.
This demonstrates the correspondence between state symmetrization and the observable
manifestation of indistinguishability: The condition for making the ions indistinguishable is
to make the symmetrization manifest in the rotational mode. As shown in Sec. 8.2.2, to do
this, it suffices in this experiment to cool the vertical rocking mode to its ground state.

2For the excitation at Trev/2, which we have seen is additionally conditioned on ∆` being even, consider
Fig. 8.5(c). Here, the |` + ∆`〉 state is exchanged with both the |`〉 state and the |` + 2∆`〉 state. The phases
of these two exchanges must line up in order for revival to occur.
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Figure 8.6: Expected signals for the 2-ion rotor interference experiment, computed from
(8.22) and (8.23) with a detuning applied, for (a) excitation when ∆` is odd, (b) excitation
when ∆` is even, and (c) parity. A Gaussian distribution of angular momentum states is
assumed.

At the indistinguishability-conditioned revival time, which is Trev/2 for the excitation and
Trev/4 for the parity, the `-dependent term of the relevant phase is π`. The corresponding
phase factor, eiπ`, is therefore −1 if all ` are odd, and +1 if all ` are even. This term
is therefore precisely the exchange phase φex: the particle identity, bosons or fermions,
manifests in the phase of the ∆θ = π revival. It is interesting to note that the exchange
phase only matches the particle identity if the vertical rocking mode is placed into a state of
even exchange symmetry, e.g. the ground state. By instead placing it in the |nvr = 1〉 Fock
state, for example, one may modify the exchange phase of the rotational revival, which now
becomes π for bosons and 0 for fermions.

It is also noteworthy that unlike many other experiments which depend strongly on quan-
tum statistics, e.g. creation of a Bose-Einstein condensate, the outcome of this experiment
is not qualitatively different depending on whether the particles are bosons or fermions.
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Rather, here the particle identity only determines the phase of the reinterference. This can
be related to the fact that this experiment does not overlap the particles, and thus does not
involve bunching or antibunching. While the two particles do become superposed onto each
others’ positions, they importantly remain distant throughout the entire experiment in the
sense that if a position measurement is performed at any time during the experiment, the
two particles are always found to be on opposite ends of the rotor.

Measuring the exchange phase presents a significant challenge. The following section
outlines experimental requirements and considerations for doing so.

8.4 Experimental considerations

We can break the requirements for performing the rotational interference experiment into
three steps, each of which has additional requirements on top of the last: (1) observing the
∆θ = 2π full rotation revival, (2) observing the ∆θ = π exchange revival, and (3) measuring
the exchange phase. Observing the full rotation revival requires sufficient phase contrast
at the revival time and requires that the spacing in ` → ` + ∆` transition frequencies be
commensurate. Observing the exchange revival additionally requires that the rotational de-
gree of freedom is symmetrized. Finally, measuring the exchange phase additionally requires
calculation and/or calibration of all dynamical and geometric phases to an absolute uncer-
tainty within π. This section considers each of these steps one at a time. We identify and
quantify effects which may hinder these steps, propose ways to mitigate them, and consider
the tradeoffs therein.

Some of the effects considered in this section are shifts to the rotational energy eigen-
spectrum, which in turn shift the transition frequencies. We will find it useful to organize
each shift into terms which are constant, linear, and higher-order in `. These three terms
have different effects which are relevant to different steps of the experiment, so effects which
shift the transition frequency are relevant to all three steps of the experiment. We thus
begin with an overview of effects which cause rotational transition frequency shifts, before
subsequently considering more quantitatively how both transition frequency shifts and other
imperfections affect each of the three steps of the experiment. Finally, we conclude with
some considerations relevant to using more than two ions for this experiment.

The considerations presented here are not complete; rather, they intend to offer a start-
ing point for more carefully considering the requirements and error budget associated with
performing this measurement.

8.4.1 Effects which shift rotational transition frequencies

In an ideal planar rotor, the transition frequency between the state |`〉 and |`+ ∆`〉 is

ω`,`+∆` =
E`+∆` − E`

~
= ωr0(2`∆`+ ∆`2), (8.24)
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Figure 8.7: Illustration of shifts to the rotational transition frequency, which are (a) inde-
pendent of `, (b) linear in `, and (c) quadratic in `. The top spectrum of each subfigure
is the transition frequency spectrum of the ∆` sideband for the ideal rotor, (8.24). The
individual underlying ` → ` + ∆` transitions within the ∆` sideband, centered at approxi-
mately ∆`ωrot, are shown. Each is color coded by whether they are odd or even, so that if
the particles are bosons then only the gold transitions occur, if they are fermions then only
the blue transitions occur, and if they are distinguishable then all transitions occur. The
example constant shift shown in (a) is exactly 2ωr∆`. Linear shifts (b) change the effective
rotational constant ωr. For quadratic shifts (c), the effective rotational constant becomes
dependent on `.

where ωr0 is the rotational constant in the absence of any shifts. We write a shift to this
transition frequency as δω`,`+∆`. The shifts considered in this subsection all take the form

δω`,`+∆`,(i) ≈
[
ai + bi`+ ci(`− ¯̀)2 +O

(
(`− ¯̀)3

)]
∆`, (8.25)

in the neighborhood of ` ∼ ¯̀, where i indexes the particular mechanism causing a shift, of
which there may be multiple. Since the angular momentum distribution is localized, ¯̀� `− ¯̀

for all values of ` which are occupied. We write the linear term in terms of ` rather than
`− ¯̀ for reasons which become apparent in Sec. 8.4.4. We ignore terms which are cubic and
higher-order in `− ¯̀. The transition frequency, including all shifts, is

ω`,`+∆` =
[
(ωr0∆`+ a) + (2ωr0 + b)`+ c(`− ¯̀)2

]
∆`, (8.26)

where a =
∑

i ai, b =
∑

i bi, c =
∑

i ci.
The effects of these three terms are as follows: a shifts the transition frequency indepen-

dent of `, contributing accumulated phase over the duration of the experiment. It is thus
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relevant to consider when considering extraction of the exchange phase itself. b shifts the
spacing between transitions of neighboring ` manifolds, shifting the revival time to

Trev =
2π

∆`(2ωr0 + b)
. (8.27)

c makes the spacing between these transition frequencies nonlinear, so that the phase contrast
of the revival is imperfect. These three effects are illustrated in Fig. 8.7.

The remainder of this subsection lists a few effects which contribute transition frequency
shifts. We do not estimate the magnitude of the terms of the shifts here, but instead do so
in the following subsections within the context of each of the three steps of the experiment.

Centrifugal distortion

This effect is considered in detail in Sec. 3.5. To first order in the expansion parameter ε`,
the eigenenergy is shifted by δE` = −~D`4, where D = 4ω3

r0/3ω
2
x is the centrifugal distortion

constant, where ωr0 is the rotational constant in the absence of centrifugal distortion. The
leading term of the resulting shift to the transition frequency is

δω`,`+∆` ≈ −4D`3∆`. (8.28)

Expanding this about ¯̀,

δω`,`+∆` ≈ −4D
[
¯̀3 + 3¯̀2(`− ¯̀) + 3¯̀(`− ¯̀)2 +O((`− ¯̀)3)

]
∆`

≈
[
8D ¯̀3 − 12D ¯̀2`− 12D ¯̀(`− ¯̀)2

]
∆`.

(8.29)

Section 3.5 defined ε` as the fractional change in rotor radius due to centrifugal distortion,
which is 10−3−10−2 for typical parameters and is equal to D`2/ωr0. It is convenient to write
the non-rigid transition frequency shift in terms of the distortion factor at the center of the
distribution, ε¯̀ = D ¯̀2/ωr0 = ω2

rot/3ω
2
x:

δω`,`+∆` ≈
[
4ε¯̀ωrot − 12ε¯̀ωr0`−

24ε¯̀ω2
r0

ωrot

(`− ¯̀)2

]
∆`

≈
[

4ω3
rot

3ω2
x

− 4ω2
rotωr0
ω2
x

`− 8ωrotω
2
r0

ω2
x

(`− ¯̀)2

]
∆`.

(8.30)

Here we have used ωrot = 2ωr0 ¯̀, which does not hold exactly in the presence of the imper-
fections considered in this subsection, but we apply it here for the purpose of estimating the
magnitude of these effects.

Residual quadrupole fields

A residual static quadrupole potential shifts the transition frequencies by (7.10)

δω`,`+∆` =
ω4
hr,resid

512ω3
r0`

3
∆`, (8.31)
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where ωhr,resid is the horizontal rocking mode frequency left by the residual quadrupole po-
tential. Expanding about ¯̀− `,

δω`,`+∆` ≈
ω4
hr,resid

32ω3
rot

[
2− 3ωr0

ωrot

`+
12ω2

r0

ω2
rot

(`− ¯̀)2

]
∆`. (8.32)

Finite temperature of other modes

From (7.12),

δω`,`+∆` ≈ 4ω2
r0

(
ns
ωs

+
nvr
ωvr

)
`∆`. (8.33)

Here we have only a term linear in `.

Aharonov-Bohm phase

A local magnetic field is present at the location of the ions in order to provide Zeeman
splitting. As the ions are charged particles enclosing an area of space, the Aharonov-Bohm
effect will produce a geometric phase in their free evolution. The Aharonov-Bohm effect
shifts the rotor’s Hamiltonian from ~ωr0L2

z to

H = ~ωr0(Lz − 2erAφ)2, (8.34)

where Aφ is the angular component of the magnetic vector potential, e is the ions’ charge,
and r is the rotor radius. The eigenenergies of this Hamiltonian are

E` = ~ωr0
(
`− eΦB

π~

)2

(8.35)

where ΦB is the magnetic flux through the rotor. This effect therefore shifts the transition
frequencies by

δω`,`+∆` = −ωr0
2eΦB

π~
∆`. (8.36)

This shift is a constant independent of `, since the area swept out by the two different terms
of the superposition is a function only of their relative rotation rate.

8.4.2 Observing the ∆θ = 2π revival

Requirements for observing the revival signal when the rotational superposition has under-
gone a relative rotation of 2π are unrelated to symmetrization. We can break the require-
ments into three categories:

• The coherence of the superposition must last longer than the time it takes for the
2π relative rotation to occur. This has thus far constituted the main experimental
challenge. This subsection primarily considers how to optimize rotational coherence
relative to revival time.
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• The phase contrast due to the initial superposition created must also be sufficient, as
it places an upper limit on the phase contrast of any subsequent revival.

• The spacing in `→ `+ ∆` transition frequencies must be sufficiently linear across the
distribution of occupied angular momentum states, as a nonlinearity in this spacing
will limit the visibility of the revival.

Rotational decoherence from angular momentum diffusion

The primary hindrance to performing the rotational interferometer experiment has thus
far been poor rotational coherence, limited by angular momentum diffusion. Here, the
contribution of diffusion to decoherence differs slightly from that considered in Sec. 7.4.2,
as there is no spin-echo to reverse the angular separation. The corresponding decoherence
envelopes for the phase contrast of the excitation and parity in the presence of angular
momentum diffusion are instead

Cexc(T ) = exp

(
−DT

2~2
[1− sinc(4∆`ωrT )]

)
, (8.37a)

Cpar(T ) = exp

(
−DT

2~2
[1− sinc(8∆`ωrT )]

)
. (8.37b)

The excitation contrast envelope differs from (7.25) by a factor of 2 in the oscillation fre-
quency because in the absence of the echo pulse, it takes half the time for the rotor’s
quadrupole moment to return to its initial orientation (in the co-rotating frame). The par-
ity contrast oscillates at a factor of 2 faster still, because the |`〉 + |`+ 2∆`〉 superposition
separates twice as quickly as the |`〉+ |`+ ∆`〉 superposition.

We require that the rotational coherence lasts at least as long as the time it takes for
the superpositions to undergo a 2π relative rotation. This is Trev = π/∆`ωr if measuring the
excitation and is Trev/2 = π/2∆`ωr is measuring the parity. If we define the rate of angular
separation as ∆ω = 2ωr∆` for the excitation and ∆ω = 4ωr∆` for the parity, then in both
cases we require that the coherence lasts longer than 2π/∆ω. We may define a general
decoherence rate γ = 1/Tcoh, where the coherence time Tcoh is the time it takes for the phase
contrast to reduce by a factor of e: C(Tcoh) = e−1. If we scale both the decoherence rate γ
and the diffusion rate D/~2 by ∆ω/2π, we find a universal relation which implicitly defines
the scaled decoherence rate in terms of the scaled diffusion coefficient:

exp

(
−D

∗

2γ∗

[
1− sinc

(
4π

γ∗

)])
= e−1. (8.38)

The dimensionless diffusion coefficient is defined as D∗ = 2πD/~2∆ω and the dimensionless
decoherence rate is defined as γ∗ = 2πγ/∆ω. Eq. (8.38) is valid for both the excitation
and the parity, since the latter has both double the angular separation rate and double
the instantaneous decoherence rate. In the limit of large diffusion this relation yields the
γ ∼ D1/3 scaling found in Sec. 7.4.2, but here we leave the relation more general. Figure 8.8
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Figure 8.8: Scaled decoherence rate versus scaled diffusion coefficient. The target regime is
where the scaled decoherence rate is less than 1.

plots the scaled decoherence rate against the scaled diffusion coefficient. For reference, the
curve corresponding to the case of including a spin-echo pulse included, (7.25), is also plotted,
along with the measurements from Fig. 7.15. For the interferometer experiment, we require
γ∗ < 1. The scaling becomes more favorable as we approach the target regime. The data
points corresponding to no injected noise serve as a reference point for the diffusion due to
intrinsic noise in our system.

We can translate this relation to be more practical, in terms of experimental parameters
of our system. Section 7.4.4 considers how to improve the absolute rotational coherence time
in these terms. For the interferometer experiment, the figure of merit is instead the ratio of
the coherence time to the revival time, where the revival time scales as

Trev ∼ ∆`−1ω−1
r ∼ ∆` ω−4/3

x . (8.39)

Thus in general, the ratio of the coherence time to the revival time scales as

Tcoh

Trev

=
1

γTrev

∼ ∆` ω4/3
x γ−1. (8.40)

The scaling of γ with the relevant parameters depends on the regime, defined by the scaled
diffusion coefficient D∗, i.e. the rate of diffusion relative to the rate of angular separation of
the superposition. In the limit of fast diffusion where D∗ � 1, (8.40) becomes

Tcoh

Trev

∼ ∆`1/3 ω4/3
x ω

1/3
rot (8.41a)
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when also limited by 1/f noise, from (7.32). In opposite limit D∗ � 1, when the diffusion

is slow compared to the relative rotation frequency, γ ∼ D ∼ ω
−8/3
x ω−1

rot (7.34), so that

Tcoh

Trev

∼ ∆` ω4
x ωrot. (8.41b)

We may improve this ratio by using higher-order superpositions, higher trap frequency, or a
faster rotation frequency.

• Higher-order superpositions exchange faster. They also decohere faster in the fast-
diffusion limit, but not in the slow-diffusion limit.

• Higher trap frequency increases the rotational constant ωr thus speeding up the relative
rotation rate for a given ∆`-order superposition, exchanging faster. It also makes the
rotor smaller than thus significantly less sensitive to noise. This benefit is cancelled
by the faster decoherence rate in the fast-diffusion limit, but not in the slow-diffusion
limit.

• Higher rotation frequency makes the rotor sensitive to noise at a higher frequency,
which will have a lower spectral density if the noise scales as 1/f .

Of these scalings, the trap frequency scales the strongest. The easiest way to improve the
ratio of the coherence time to the revival time is thus to increase the horizontal trap frequency.
Figure 8.9 plots both the coherence time and revival time against the trap frequency for a
few values of rotation frequency and ∆`. The vertical line is at 1.44 MHz trap frequency,
the trap frequency used for the data presented in Chapter 7. These data serve as a reference
point for the noise level to set the coherence times3.

Some considerations for adjusting experimental parameters so that the coherence time
exceeds the revival time are follows:

• Increasing the trap frequency. This can be done by either applying a higher
amplitude RF drive to the trap’s RF electrodes to increase the horizontal and vertical
trap frequencies proportionally, by applying a DC bias to one of the RF electrodes
to increase the horizontal trap frequency at the cost of the vertical trap frequency,
or a combination of the two. Increasing the RF amplitude could be done by using
a resonator with a higher Q-factor, or by using an RF amplifier. The latter could
compromise trap frequency stability, another source of rotational decoherence, if not
used along with active stabilization. Figure 8.10 shows how a DC bias can change
the trap frequency when the unbiased horizontal trap frequency is 2.5 MHz using a
numerical simulation of the ring trap. A DC bias voltage of 10 V can increase the

3Note that the coherence times shown in Fig. 8.9 are also scaled from the reference measurements to
infer coherence times without a spin-echo pulse given measurements using a spin-echo pulse. For example,
the actual measured coherence time for ∆` = 2 at 150 kHz rotation and 1.44 MHz trap frequency is 3

√
4 times

longer than what is shown in Fig. 8.9.
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Figure 8.9: 2π revival time and diffusion-limited rotational coherence time plotted against
trap frequency, for various combinations of ∆` and rotation frequency, for (a) excitation
and (b) parity. For the excitation, the 2π revival time is equal to Trev as defined by (8.15),
and for the parity, the 2π revival time is equal to Trev/2. The dependence on rotation
frequency assumes 1/f noise. The vertical line is at 1.44 MHz, where rotational coherence
was measured.
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Figure 8.10: Secular trap frequencies of the ring trap as a function of DC bias from numerical
simulations. 172 V amplitude RF is applied at 21.3 MHz, giving an unbiased horizontal trap
frequency of 2.5 MHz.

horizontal trap frequency from 2.5 MHz to 3.3 MHz without further increasing the RF
drive amplitude. The vertical trap frequency must be kept larger than the horizontal
for the crystal to form a rotor in the xy-plane. Furthermore, lowering the ratio of the
vertical to the horizontal trap frequency lowers the vertical rocking mode frequency
ωvr =

√
ω2
z − ω2

x, which can increase its contribution to rotational transition frequency
shifts (8.33) and can increase its heating rate, thus lowering the visibility of the ∆θ = π
exchange revival (Sec. 8.4.3). However, both of these effects are likely to be small.

• Creating higher-order superpositions. As the horizontal trap frequency is in-
creased, the rotor radius is reduced, thus reducing the dimensionless parameter
ζ = 2πr/k‖. Achieving an acceptable Rabi frequency on a higher-order sideband,
Ω∆` = ΩJ∆`(ζ), then requires a deeper tilt of the vertical 729 nm beam, or more laser
power overall (Sec. 6.3). Also, preparing higher-order superpositions is more challeng-
ing since the linewidth of the ∆` sideband is proportional to ∆`, hurting the achievable
initial phase contrast. This can be mitigated by finding a way to prepare a narrower ini-
tial angular momentum distribution. A few advanced techniques, which have not been
tested experimentally, could also aid in the preparation in higher-order superpositions:

– Light with orbital angular momentum. Rather than a tilted vertical plane wave,
one may use a vertical 729 nm beam in an orbital angular momentum (OAM)
mode to impart transverse angular momentum. OAM light has been used to
impart angular momentum onto microscopic particles [93, 94] and has even been
used to excite the transverse vibrational motion of a trapped ion’s vibrational
motion [95]. For our rotor, OAM light would yield different coupling strengths to
∆` sidebands than a plane wave, which may enhance the coupling strength of a
desired high-order ∆` sideband. However, it is not yet known how the rotational
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sideband coupling strengths would be modified, and it may depend on the size of
the OAM beam relative to the rotor [96].

– Concatenated ladder pulses. Ref. [97] demonstrates the creation of high-order
superpositions of Fock states with of the form |0〉 + |n〉, with n up to 100, using
the vibrational motion of one trapped ion. This is done addressing only low-order
sidebands, first applying a blue-sideband π/2 pulse and then applying alternating
red- and blue-sideband π pulses to bring the initial superposition state up the
number state “ladder”. The same technique could be used in our trapped-ion
rotor to create high-order rotational superpositions without needing to address a
high-order ∆` sideband. The experiment may in fact be simplified when applied
to a rotor, since the coupling strengths of the rotational sidebands do not change
as ` changes, simplifying calibration.

• Increasing the rotation frequency. In principle, increasing the rotation frequency
is simply a matter of choosing a higher target rotation frequency during rotational state
preparation. However, we have seen that rotational state preparation is not consistently
reliable, and have not succeeded in preparing the rotor at a rotation frequency faster
than 350 kHz for unknown reasons. Using a faster rotation frequency also worsens
effects from centrifugal distortion, though this is mitigated by using a higher horizontal
trap frequency which stiffens the rotor.

Rotational decoherence from trap frequency instability

From (7.15), the coherence time due to trap frequency instability is

T coh
∆` =

3ωx
4ωrot∆`

T coh
x (8.42)

where T coh
x is the coherence time of the horizontal trap frequency, which may be measured

using a |0〉+ |1〉 state of the horizontal COM vibrational mode. Increasing the rotation fre-
quency reduces the coherence time because the rotational superposition has a larger transi-
tion frequency. If the vibrational coherence stays constant as the trap frequency is improved,
then increasing the trap frequency also improves rotational coherence times. However, it is
more likely that the relative vibrational stability will remain approximately constant as the
trap frequency is increased, so that ωxT

coh
x remains constant.

Unlike Sec. 7.2.4, here the relevant vibrational coherence time is unechoed. Slowly
drifting trap frequency fluctuations will therefore contribute to decoherence in the inter-
ferometer experiment, whereas they are cancelled by the echo pulse in the measurements
shown in Fig. 7.5. The unechoed vibrational coherence time has not been measured re-
cently, but was found to be approximately 6.5 ms at ωx = 2π × 1.6 MHz in December 2020,
which was prior to the construction of the Faraday cage. This is a fractional instability of
[1/(6.5 ms)]/(2π × 1.6 MHz) ≈ 1.5× 10−5. Assuming this fractional stability to be constant
as the horizontal trap frequency is raised to 3 MHz, a ∆` = 4 superposition rotating at
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300 kHz will have a trap-frequency-stability-limited coherence time of 6.6 ms, compared to
a revival time of 3.7 ms. Note that the decoherence rate due to trap frequency instability
always scales linearly with ∆`, while that due to diffusion always scales sublinearly with
∆`. Thus a choice of ∆` which is too large may make trap frequency stability the limiting
decoherence source.

Electronic coherence

The spin-echo pulse used in electronic coherence measurements presented in Fig. 7.4 also
significantly aids the electronic coherence. In the absence of this echo pulse, even using line
triggering, the electronic coherence is poor, lasting about 1 ms. This problem may be solved
in the rotational interferometer experiment by applying spin-echo pulses on the carrier only,
thus echoing the electronic state without affecting the rotational motion. An even number of
carrier echo pulses must be used to restore the electronic state before the final π/2 rotational
sideband pulse. The optimal spacing of the pulses will depend on the nature of the slow
magnetic field or laser frequency fluctuations which otherwise cause electronic decoherence
[98].

Initial phase contrast

The visibility of the revival interference fringes will also be limited by the fidelity of the
initial rotational sideband π/2 pulse, which sets the initial phase contrast. The choice of ∆`
cannot be too high to preclude sufficient fidelity rotational operations, though a narrower
angular momentum distribution of the use of OAM light can help.

Commensurate spacings in rotational transition frequencies

The ideal dynamical phases given in (8.23) allow for a phase contrast revival because the
phase difference of all neighboring `-manifolds, e.g. φ1,`+1 − φ1,` (or φ1,`+2 − φ1,` for indis-
tinguishable particles), is a constant which is independent of `. Revival occurs when this
constant difference is a multiple of 2π. This constant phase difference results from a linear
spacing between neighboring transition frequencies ω`,`+∆` and ω`+1,`+∆`+1, whose difference
is 2∆`ωr. The linear spacing of transition frequencies in turn arises from the quadratic en-
ergy spectrum E` = ~ωr`2. Imperfections which shift the eigenspectrum nonuniformly, so
that the spectrum is no longer quadratic, therefore reduce the visibility of the phase contrast
revival by creating nonuniformly spaced rotational transition frequencies. This is the effect
illustrated in Fig. 8.7(c).

The effects which contribute to this mechanism of reduced revival visibility are those
whose corresponding transition frequency shifts δω`,`+∆` include a term which is nonlinear
in `. From (8.26),

dω`,`+∆`

d`
=
[
(2ωr0 + b) + 2c(`− ¯̀)

]
∆`. (8.43)
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The c term changes the spacing of the transition frequency across the angular momentum
distribution, which spans from ` = ¯̀+ σ` to ` = ¯̀− σ`. At the revival time Trev, the phase
difference between manifolds is approximately

φ1,`+1 − φ1,` ≈
dω`,`+∆`

d`
Trev ≈ 2π

[
1 +

c(`− ¯̀)

ωr0

]
. (8.44)

Across the angular momentum distribution, the fractional difference in the revival phase is
thus 2cσ`/ωr0.

Of the effects considered in Sec. 8.4.1, only centrifugal distortion and residual quadrupole
shifts have a nonlinear transition frequency shift term.

• Centrifugal distortion. From (8.30),

ci = −8ωrotω
2
r0

ω2
x

=⇒ 2ciσ`
ωr0

= −16ωrotωr0σ`
ω2
x

. (8.45)

Conservatively assuming unfavorable parameters of ωrot = 2π × 300 kHz, ωx = 2π ×
1.5 MHz, ωr0 = 2π× 14 Hz, and σ` = 100, the fractional difference in the revival phase
across the distribution is 3× 10−3.

• Residual quadrupoles. From (8.32),

ci =
3ω4

hr,residω
2
r0

8ω5
rot

=⇒ 2ciσ`
ωr0

=
3ω4

hr,residωr0σ`

4ω5
rot

. (8.46)

Conservatively assuming unfavorable parameters of ωhr,resid = 2π × 40 kHz, ωrot =
2π × 100 kHz, ωr0 = 2π × 50 Hz, and σ` = 100, the fractional difference in the revival
phase across the distribution is 1× 10−3.

Both of these effects are therefore likely to be negligible in reducing the revival contrast
visibility.

8.4.3 Observing the ∆θ = π exchange revival

The only requirement for observing the ∆θ = π exchange revival beyond those for observing
the ∆θ = 2π full rotation revival is for the rotational degree of freedom to be symmetrized.
As shown in Sec. 8.2, for this it suffices to cool the vertical rocking mode to its ground
state. Residual population in the |nvr = 1〉 state, for example, will contribute population in
the rotational degree of freedom of the “wrong” exchange symmetry, limiting the contrast
visibility of the exchange revival, but not of the full rotation revival. It is straightforward to
sideband cool the vertical rocking mode so that > 90% of the population is in the ground
state.
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Heating of the vertical rocking mode

We may worry that heating of the vertical rocking mode during the experiment will move
population from the |nvr = 0〉 ground state to the |nvr = 1〉 state. The nature of the heating
mechanism when the ions freely rotate is different from when the ions are pinned to well-
defined equilibrium positions, but the order of magnitude of the heating rate is the same.

To see this, we consider the Hamiltonian for the two-ion rotor interacting with electric-
field gradient noise, given in (7.17). The relevant terms are those which contain the vertical
rocking mode ladder operators, avr, a

†
vr. Using (7.18), we find that the relevant terms in

(7.17) are the xz and yz terms. These terms of the Hamiltonian give

HE,vr(t) = r

√
~

mωvr

(
avr + a†vr

)
[Eρz(t)L+ + Eρz(t)∗L−] , (8.47)

where Eρz = ∂zEx − i∂zEy is a complex-valued electric field gradient. These field gradients
couple the vertical rocking motion to the rotational motion at their sum and difference fre-
quencies. Unlike a pinned two-ion crystal, the vertical rocking motion in the rotor cannot
heat without coupling to another mode. There are also terms by which the same gradi-
ents couple the vertical rocking, stretch, and rotational motion all together, but these are
suppressed by a factor of

√
~/mωs/r relative to (8.47) and are thus negligible. Thus the

dominant mechanism by which the vertical rocking mode heats in the rotating ion crystal is
by exchanging quanta with the rotational motion. Note that this interaction preserves the
overall exchange symmetry, as must be the case since the Hamiltonian itself is exchange-
symmetric4.

The quadrupole moment for the heating rate of the vertical rocking mode in the rotat-
ing ion crystal is er

√
~/mωvr, the ion-ion distance times the vertical rocking ground state

wavefunction size. This is the same as the case of a pinned ion crystal. The heating rate
itself is therefore of the same order. The heating rate of a differential mode of motion is slow
compared to a comparable center-of-mass mode, as discussed in Sec. 5.1.1. We thus expect
heating of the vertical rocking mode to be negligible.

8.4.4 Measuring the exchange phase

With the phase conventions defined in (8.23), the phases φ1,` and φ2,` are the difference
between two terms: one proportional to the laser detuning from the carrier, and one equal
to the dynamical phase from the rotation. This difference is small (zero if ∆ is exactly on
resonance with the `→ `+ ∆` transition), but each of the terms is large.

To identify the exchange phase, it is most convenient to organize the total phase into
two categories: terms which are proportional to `, and terms which are constant with `,

4Note also that, when the vertical rocking mode heats in a pinned two-ion crystal, exchange symmetry
is still preserved even though only the rocking mode changes its quantum number. This is possible via the
extra degeneracy due to the pinning (Sec. 8.2.1).
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as is done in Tab. 8.15. Those which are proportional to ` become π` at half the revival
time, which together reduce to the exchange phase as shown in Sec. 8.3.2. However, we
measure only the total phase, φ1,` (for excitation) or φ2,` (for parity) (8.22). It it is thus
necessary to know the terms which remain after collapsing the exchange phase down to 0 or
π. These terms are comprised of all dynamical and geometric phases, and must be known to
an absolute uncertainty within π in order to extract the exchange phase from the measured
total phase. Since ` ∼ 103, the remaining constant term will similarly be of order 103 × 2π,
and thus requires very precise calibration.

As an example, let us consider the exchange revival in the excitation, so that we consider
the phase φ1,` at time Trev/2, for now ignoring any shifts due to imperfections. This can
be seen in Tab. 8.1. We also suppose ∆` = 4, so that the π

2
∆` term becomes 2π → 0 for

simplicity. We are left with the constant phase −π∆/2∆`ωr plus the exchange phase, where
∆ is the detuning from the carrier. To interpret this leftover constant phase, we can write
∆ = ∆` ωrot + δ, defining δ as the detuning from the rotational sideband being addressed.
Then the leftover phase is

− π∆

2∆`ωr
= −π

(
ωrot

2ωr
+

δ

2∆`ωr

)
. (8.48)

The first of these terms is the dynamical phase: in the time it takes the rotational super-
position to undergo a π relative rotation, the crystal makes ωrot/4∆`ωr full rotations, and
acquires a phase equal to 2π∆` times this number. The second term is additional phase
acquired due to the detuning. The dynamical phase is of order ∼ 103 × 2π, but should
be known to within π to identify the exchange phase. Shifts due to imperfections will also
contribute to the dynamical phase, and geometric phases will contribute as well. These
large dynamical and geometric phases are likely to be the main challenge of measuring the
exchange phase.

We may also think of the precision required to measure the exchange phase in terms of
transition frequencies. Knowing the exchange phase is equivalent to knowing whether the
` → ∆` transitions being driven on the ∆` sideband are from odd or even `. Referring to
Fig. 8.7(a), a shift in transition frequency of only 2ωr∆` swaps transition frequencies of odd
and even `. This is equivalent to a π phase shift in the dynamical and geometric phases.
These shifts therefore need to be known to within 2ωr∆` in order to be able to identify the
exchange phase. All shifts considered here are proportional to ∆`, so that using higher ∆`
reduces the revival time but proportionally increases the shift. Ignoring the ∆` factor then,
all shifts must be known to within 2ωr < 100 Hz in order to know the exchange phase with
an uncertainty of less than π (see also (8.52)).

Some information may be gained by measuring the phase at the revival time, φ1(Trev).
This is the same regardless of particle identity, and thus does not depend on exchange phase.

5Here we neglect terms which are quadratic and higher-order in `, which do not enter directly into these
considerations as long as these terms have been expanded about the center of the distribution ¯̀, as done in
Sec. 8.4.1. Sec. 8.4.2 has shown that these contributions are negligible.
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Ignoring slow magnetic field drifts during the experiment, the phase at the exchange time
must be either φ1(Trev/2) = φ1(Trev)/2 or φ1(Trev/2) = φ1(Trev)/2 + π. However, this does
not disambiguate which of the two possibilities belongs to bosons and which to fermions.

Importantly, while the magnitude of some of the shifts considered here are dependent
on the center of the angular momentum distribution ¯̀ via the rotation frequency, it is not
necessary to know ¯̀ or the shape of the distribution itself very precisely to calibrate them.
By organizing the `-dependent phases into a term which becomes the exchange phase, we
need only know the detuning of the laser pulse from the carrier frequency, rather than the
detuning from the center of the rotational sideband being addressed.

Shifts to the revival time

The dynamical and geometric phases will depend on the Ramsey time at which the mea-
surement is made. Effects which shift the revival time therefore also shift these phases. In
practice, the revival time may be directly measured. Still, here we estimate the magnitude
of some effects which cause this shift.

As discussed in Sec. 8.4.1, the revival time is defined by the time at which the phases
from all ` manifolds line up to differ by a multiple of 2π. Thus the term of the transition
frequency shift which is proportional to `, termed bi in Sec. 8.4.1, is responsible for shifting the
revival time (8.27). This term changes the spacing between neighboring transition frequencies
` → ` + ∆` and ` + 1 → ` + ∆` + 1. The fractional shift in the revival time is 2ωr0/

∑
i bi.

Assuming parameters of ωrot = 2π × 200 kHz, ωx = 2π × 3 MHz =⇒ ωr0 = 2π × 35 Hz, the
effects considered in Sec. 8.4.1 shift the transition frequency spacing as follows:

• Centrifugal distortion.

bi = −4ω2
rotωr0
ω2
x

= −2π × 0.6 Hz. (8.49)

• Residual quadrupole fields.

bi = −
3ω4

hr,residωr0

32ω4
rot

= −2π × 8× 10−4 Hz (8.50)

assuming a horizontal rocking frequency due to residual quadrupoles of ωhr,resid =
25 kHz.

• Finite temperature of other modes

bi = 4ω2
r0

(
ns
ωs

+
nvr
ωvr

)
= 2π × 0.02 Hz (8.51)

assuming nvr = 0 and ns = 20 on average.

Centrifugal distortion is the only one of these effects likely to result in a measurable shift in
the revival time. For ∆` = 2, Trev shifts from 7.14 ms to 7.27 ms, a change of about 2%, due
to centrifugal distortion using these parameters.
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Dynamical and geometric phases

Here we consider dynamical and geometric contributions to the revival phase itself from
the effects considered in Sec. 8.4.1. These arise from the constant shifts in transition fre-
quency, i.e. the ai terms as defined in (8.32). These phases at the exchange time Trev/2
are ai∆`Trev/2. For simplicity we estimate the magnitude of these phases ignoring the small
shifts to the transition frequency spacing bi, so that the effective rotational constant is simply
ωr = ωr0, and Trev = π/∆`ωr. The phase contribution at the exchange time is then

φshift,i = 2π × ai
4ωr

. (8.52)

We assume the same parameters of ωrot = 2π × 200 kHz, ωx = 2π × 3 MHz =⇒ ωr =
2π × 35 Hz.

• Centrifugal distortion.

ai =
4ω3

rot

3ω2
x

= 2π × 1.19 kHz

φshift,i = 2π × ai
4ωr

= 2π × 1.19 kHz

140 Hz
= 2π × 8.5.

(8.53)

• Residual quadrupole fields.

ai =
ω4
hr,resid

16ω3
rot

= 2π × 3 Hz

φshift,i = 2π × ai
4ωr

= 2π × 3 Hz

140 Hz
= 2π × 0.02.

(8.54)

assuming ωhr,resid = 2π × 25 kHz.

• Aharonov-Bohm phase

ai = −2eΦBωr0
π~

= −2π × 55 Hz

φshift,i = 2π × ai
4ωr

= −2π × 55 Hz

140 Hz
= −2π × 0.4.

(8.55)

Here we have used ΦB = B‖ × πr2 and assumed a magnetic field of 4 G tilted 45◦

relative to the rotor plane, and have used that ωr = 2π× 35 Hz corresponds to a rotor
radius of r = 1.35 µm.

• Magnetic field drifts. Over the timescale of several milliseconds, the local magnetic
field tends to drift, shifting the |S〉 ↔ |D〉 electronic transition frequency on the order
of kHz. This drift is typically matched to the 60 Hz AC wall power and thus can be
made constant over experimental repetitions by line triggering. The Zeeman shift will
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contribute to the acquired phases φ1,` and φ2,` during the Ramsey experiment. This
contribution is is independent of `, but in general will not accumulate at a constant rate.
These drifts can be calibrated with a Ramsey measurement on the carrier transition.

All of these effects are likely to be considerable, with the exception of shifts due to residual
quadrupole fields. It is likely straightforward to measure the local magnetic field to estimate
the Aharonov-Bohm phase, as well as to directly measure phase drifts of the carrier transition.
Effects of centrifugal distortion, however, may require careful measurement, and may possibly
even require estimating the shift to second order, (i.e. beyond what is considered in Sec. 3.5)
to resolve it to within the 100 Hz level. Rotating at 300 kHz rather than 200 kHz would
increase the dynamical phase contribution (as estimated here to first order only) of centrifugal
distortion from 2π × 8.5 to 2π × 28.6 radians.

The previous subsection estimates the shift in the revival time due to imperfections,
estimating the shift to be about 2%. This changes the acquired dynamical and geometric
phases by the same fraction. The dynamical phase contribution from centrifugal distortion
may then be an appreciable fraction of 2π, necessitating accounting for this shift in revival
time. In practice, rather than assuming Trev = π/∆`ωr0, the revival time can be carefully
measured directly. This is especially important when considering how shifts to the revival
t ime change the phase contribution of the ∆ term in Tab. 8.1. This phase contribution is
more generally expressed as −∆Trev/2. Because this phase is large ∼ 103 × 2π, Trev should
be carefully measured.

Summary

Measuring the exchange phase requires knowledge of all dynamical and geometric phases
to within π. This is equivalent to knowing all relevant frequencies to within ∼ 2ωr, the
splitting between transition frequencies of neighboring `. This is about 2π × 100 Hz or
smaller, and depends on the choice of trap frequency. This information allows one to resolve
whether transitions from odd or even ` are being addressed, from which it can be inferred
that only odd or even ` were occupied to begin with. The frequencies to be known include
the detuning from the carrier ∆ as seen in Tab. 8.1, but also include shifts due to other
effects. The former is of order hundreds of kHz, contributing phase of order ∼ 103 × 2π,
and thus requires precise knowledge of the carrier frequency and the revival time, which
itself also shifts from imperfections. Centrifugal distortion will contribute a smaller but still-
substantial phase ∼ 101×2π and thus should also be carefully accounted for. The geometric
Aharonov-Bohm phase due to the rotor enclosing a finite magnetic field may also contribute
a phase shift which is near 2π.

8.4.5 On using more than two ions

In principle, it is also possible to perform the interferometer experiment using a crystal
of more than two ions. The main motivation for doing so would be to improve diffusion-
limited rotational coherence. More ions would give the crystal a higher degree of rotational
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symmetry, making it insensitive to higher multipole orders of electric field noise. However,
many of the considerations explored in this chapter change if more than two ions are used.
A few of these differences are noted in this subsection.

Many of the differences noted depend on the degree of rotational symmetry, rather than
directly on the number of ions in the crystal. Numerical simulations suggest that N ions in
a planar rotor equilibrate along a single concentric ring up to N = 5. With N = 6, one ion
sits at the center, so that the crystal still has only 5-fold rotational symmetry.

Rotational state preparation

A Coulomb crystal with three-fold or higher rotational symmetry is insensitive to quadrupole
fields. While this helps with angular momentum diffusion, it complicates rotational state
preparation. The eight outer DC electrodes of the ring trap provide enough degrees of
freedom to produce an arbitrarily oriented potential with only up to two potential wells.
They can create an octupole field, but its orientation is fixed.

If using three or more ions, a sufficiently strong pinning potential can break the crystal’s
rotational symmetry so that the crystal acquires an induced quadrupole moment. This
pinning can then be used for rotational state preparation in the same way that has been
done in this work. The height of the pinning potential due to the induced quadrupole would
be weak compared to the case of two ions, which may complicate cooling of the pinned
librational mode which maps onto the rotational mode. Compensating for this would likely
require amplification of the voltage from the AWG used to provide the pinning potential,
which is otherwise limited to ±10 V.

Rotational decoherence

An ion crystal with N -fold rotational symmetry is insensitive to electric field multipole
orders up to N − 1. Thus, a crystal of three or more ions would not be affected by the
noisy quadrupole electric fields that currently limit the electronic coherence. The dominant
multipole for resonant electric field interactions is the (N−1)th-order gradient of the electric
field, and the corresponding multipole moment of the crystal is proportional to rN . The
diffusion coefficient thus scales as

D ∝ r2NS∇N−1E(Nωrot). (8.56)

For each increment in multipole order, this diffusion coefficient is suppressed by a factor of
about (h/r)2 ∼ 103, where h = 181 µm is the distance of the ion crystal to the trap surface.
The diffusion coefficient also scales more strongly with the radius and thus also more strongly
with the horizontal trap frequency.

Observing phase contrast revivals

With two ions, a π/2 pulse on a rotational sideband creates a superposition of four states
for each ` manifold. Similarly, there are eight such states with three ions: |SSS, `〉,
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|DSS, `+ ∆`〉, ..., |DDD, `+ 3∆`〉. There are four different rotational states within each
manifold (`, `+ ∆`, `+ 2∆`, `+ 3∆`), and thus more combinations of relative phases which
could constructively or destructively interfere at exchange times.

Making the ions indistinguishable

An N -ion crystal has a total of 3N motional modes. More ions thus means more degrees
of freedom which could contain distinguishing information about the ions’ particle identity,
whereas the only such mode in a 2-ion rotor is the vertical rocking mode. All of the additional
modes which contain distinguishing information would also need to be cooled to their ground
state, and would need to be maintained at this temperature throughout the experiment.

Measuring the exchange phase

The exchange phase is measurable with a two-ion crystal under the proposed experimental
protocol because a relative rotation of π is equivalent to an exchange of the particles. With
N ions, a relative rotation is more generally a cyclic permutation, which can be expressed
as some combination of exchange operations. If N is odd, then the cyclic permutation is
always equivalent to an even number of exchanges, thus making the total exchange phase
0 regardless of particle identity. For example, a 3-ion crystal in superposition undergoing a
2π/3 relative rotation performs the permutation {1, 2, 3} → {2, 3, 1}, which is equivalent to
two exchange operations: 1 ↔ 2 followed by 1 ↔ 3. A measurement of the exchange phase
may thus require the use of an even number of ions.
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Chapter 9

Summary and Outlook

This work has demonstrated the creation of non-classical states of the rotational motion
of a trapped-ion Coulomb crystal, using a unique surface ion trap. This rotational motion
features many characteristics which differ from the usual vibrational motion of Paul-trapped
ion crystals. We have shown in Chapter 6 that the spacing of rotational sidebands of a
coherent electronic transition can be set by choosing the rotation frequency of the crystal.
We have also found agreement in the rotational sideband coupling strength as a function
of sideband order ∆` with the theory established in Chapter 3. We have shown how to
prepare the rotational state in such a way that addressing rotational sidebands results in
clean coherent Rabi oscillations, which we have used to create superpositions of angular
momentum states with reasonably high fidelity. Finally, with careful measurements and an
application of fairly new theory to our system, we have studied the decoherence of these
rotational superpositions and shown that it is limited by interaction with resonant electric-
field gradient noise in Chapter 7. This is the first experimental study of decoherence of a
quantum rotor through angular momentum diffusion, and agrees closely with theory.

For some time, the functionality of this experiment had been limited by electric field
noise normal to the trap, which had been causing resonant heating of the vertical center-of-
mass motion of the ions and preventing ground-state cooling of this motion. This in turn
prevented clean addressing of the ion crystal’s rotational motion. Following a long hiatus
due to the COVID-19 pandemic in 2020, this noise was newly measured in early 2021. As
discussed in Chapter 5, efforts were made to mitigate this noise, but were not successful until
the construction of the Faraday cage in mid 2022. It is interesting to note that during this
time, the heating rate in the direction parallel to the trap surface remained low, indicating
that the electric field noise was strongly directed normal to the trap surface. It may be
the case that this trap is particularly susceptible to such highly directed noise due to its
high degree of circular symmetry. It may also be the case that surface-ion traps always
exhibit their largest component of electric-field noise in the direction normal to the surface
simply because the electrode which is physically closest to the ion crystal is the one directly
underneath it. Nearly all other trapped-ion experiments which use surface traps do not
address motion normal to the surface and thus would be insensitive to this noise if it were
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present.
Coherently addressing the rotational motion of the Coulomb crystal crucially relies on

a clean preparation of the rotational state. However, the success of the spin-up-and-release
procedure established and studied in Chapter 6 is highly sensitive to many factors, many
of which are not well-understood. It is difficult to predict under what conditions it will be
successful and what conditions it will not be, and successful rotational state preparation has
often been a matter of luck. In continuing this work, this lack of reliability may prove to be
a significant limitation. Overcoming it may require a deeper understanding of what limits
the reliability via careful theoretical and/or experimental study.

Having arrived at a detailed understanding of the mechanisms limiting the rotational
coherence in our system, we have been able to establish how to overcome the decoherence by
straightforward changes to experimental parameters, primarily by increasing the transverse
trap frequency. This can be done without needing to lower the diffusion-causing electric-field
gradient noise itself, which may in fact already be surface-noise limited. The experiment is
thus in a favorable position for attempting the rotational interferometer experiment. Being
able to observe phase coherence revivals appears to be fairly straightforward, while extracting
the exchange phase from the revival signal is likely to be fairly challenging, requiring careful
calibrations and calculations of dynamical and geometric phases.

Beyond the rotational interferometer experiment, the ring trap is likely to provide a
platform for several other experiments which take advantage of its unique symmetry. The
ability to carefully resolve and measure rotational sideband coupling strengths could provide
a tool for studying the local angular momentum density of light carrying orbital angular
momentum, which remains in some sense ambiguous and has not been measured before
[96]. Also, quantum rotors in general feature a rich array of physical phenomena which
are not present in harmonic oscillators. Further developing the control over the quantum
state of the rotational degree of freedom could open the door to other rotor-based quantum
experiments that are able to take advantage of the precision of trapped ions, such as a kicked
quantum rotor to study quantum chaos [99]. Finally, the ring trap has in the past also been
used to create a large (90 µm diameter), highly symmetric toroidal potential with many ions
[15]. This is akin to a linear ion crystal, but with the special property of having intrinsic
periodic boundary conditions. This modality of the ring trap may provide a platform for
quantum simulations of phenomena which display unique behavior under periodic boundary
conditions, such as the Kibble-Zurek mechanism [100] and quantum friction [101].
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