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Abstract

Efficient and trusted operation of quantum computers and quantum simulators

by

Ryan Matthew Shaffer

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Hartmut Häffner, Chair

Quantum computers have the potential to revolutionize the computational power accessible
to humanity. But because the scale and quality of current devices is limited, maximizing
their usefulness requires that researchers make efficient use of the resources that they provide.

Motivated by this, we introduce in this work several techniques for efficient verification and
operation of near-term quantum devices. We first develop and demonstrate a stochastic
quantum compilation technique (STOQ) which produces approximate compilations of uni-
taries in terms of any arbitrary native instruction set. We then construct a novel verification
protocol for quantum devices called randomized analog verification (RAV), which uses STOQ
to generate verification sequences that ideally leave the system near a measurement basis
state, which allows for efficient estimation of the success rate.

We first apply RAV to the context of quantum computers with continuously-parameterized
native gate sets. We demonstrate both numerically and experimentally that RAV provides
an efficiency advantage over cross-entropy benchmarking (XEB) when estimating an error
rate experimentally. We then adapt the RAV protocol for verification of analog quantum
simulators, and we demonstrate its sensitivity to various types of error both numerically and
experimentally.

In addition, we discuss practical techniques for efficient operation of quantum computers.
We develop and implement a surrogate-based optimization (SBO) technique for variational
quantum algorithms, and we demonstrate that the technique has significant performance ad-
vantages over the most commonly-used optimization methods. Then, applying a more exper-
imental lens, we describe work toward realistic simulation of various aspects of a trapped-ion
experiment, such as experimental control sequences and calibration runs.

Taken together, the techniques introduced in this work are a collection of incremental steps
toward the broader goal of increasing efficiency in near-term quantum computers and quan-
tum simulators.
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Chapter 1

Introduction

1.1 Motivation

Quantum computers have the potential to revolutionize the computational power accessible
to humanity. Many believe that quantum computers will have the ability to signi�cantly out-
perform their classical counterparts across a range of applications, such as breaking common
encryption schemes [143], simulating complex chemical dynamics [84], and �nding solutions
to di�cult optimization problems [64].

But achieving computational advantage with quantum computers will require hardware
signi�cantly beyond the current state-of-the-art in both quality and scale. Despite many sci-
enti�c breakthroughs in recent decades, current quantum computers are still relatively small
and unreliable compared to what will be needed to surpass conventional supercomputers on
real-world applications. The devices that exist today, which have been labeled as \noisy
intermediate-scale quantum" (NISQ) devices [125], are most useful as tools for research and
exploration of what will be possible as the devices continue to improve in reliability and
size over the coming years. As illustrated in Figure 1.1, these devices can be implemented
using a wide range of physical platforms, including chains of atomic ions trapped in electrical
potentials, superconducting circuits cooled nearly to absolute zero, and beams of photons
controlled via high-precision optics.

Because the scale and quality of current devices is limited, maximizing their usefulness
requires that researchers make e�cient use of the resources that they provide. First, since
the devices are fundamentally error-prone, �nding e�cient techniques for calibrating and
verifying the con�guration of the devices will be critical for ensuring that they are operating
to the best of their capability. In addition, because the devices are di�cult and expensive
to build, demand for computational time will likely exceed supply for some time. Therefore,
techniques for improving the e�ciency of computations will lead directly to increased bene�t
to the researchers who are exploring potential algorithms and applications.
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