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Abstract

Noise sensing and quantum simulation with trapped atomic ions

by

Dylan J Gorman

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Hartmut Häffner, Chair

In this work, we present a novel method to couple any two vibrational modes of a single
trapped ion, allowing energy to be swapped between the two modes. We use the scheme to
perform ground state cooling and heating rate measurements of vibrational modes without
direct optical access. This lessens experimental design constraints in trapped ion experi-
ments, particularly in surface trap apparatus where optical access can be difficult.

We use a single ion as an electric-field noise sensor to study noise processes originating
on the metallic surfaces of microfabricated ion traps. We show that realistic models of
surface noise predict a specific polarization of the electric-field fluctuations relative to the
trap geometry. In contrast, technical noise sources predict a different polarization direction
and magnitude which can be inferred by electrostatic simulation of the trapping electrodes.
We show that, by comparing heating rates of the two radial modes of a single trapped ion,
one can determine whether technical noise sources are a significant contribution to heating.
This is an important test for experiments aimed at studying surface noise effects. We also
study dephasing due to surface noise, in which the electric potential curvature due to surface
noise sources disturbs the phase of the ion motion. We measure the dephasing time for
trapped ion motion. Using a noise model featuring dipolar noise sources, we probe the
power spectrum of surface noise effects. These measurements, especially if repeated in a
trap with smaller ion-electrode distances, may yield new insights as to the physical origin of
surface noise effects.

We demonstrate a two-ion quantum simulation of vibrationally-assisted energy transfer,
an important phenomenon in biochemical energy transfer. We show that the quantum
simulator performs well when benchmarked against exact numerical simulation. We believe
that our approach can be scaled to more complicated systems beyond the reach of classical
simulation, and discuss several methods for extending the simulation.
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Chapter 1

Introduction

In many respects, trapped-ion experiments are a unique playground for exploring nearly
idealized quantum experiments. As we shall see throughout this work, a single trapped
ion can often be thought of as a two-level spin attached to a three-dimensional harmonic
oscillator. In this description, the two-level system models the electronic structure of the
ion, and the harmonic oscillator describes the motion.

As is often the case in research, my experimental work did not follow a precisely linear
path. Results from three different experimental setups are presented in this thesis.

My research began as an effort to build so-called “hybrid quantum systems” with trapped
ions. In 1990, Heinzen and Wineland [26] pointed out that a trapped, oscillating charged
particle ought to induce electrical currents in nearby electrodes. Those ideas lead rather
directly to the experimental proposal by Daniilidis and co-authors [14] to use the induced
currents as an ion-ion coupling mechanism. The idea behind this experiment is to trap an
ion at each end of a metal wire. As one trapped ion oscillates, it should induce a current in
the wire which can in principle be detected by an ion at the other end. This can lead, for
instance, to exchanging single vibrational quanta between the two trapped-ion oscillators.
This ion-wire-ion system would be a first step towards building hybrid quantum devices such
as ions coupled to superconducting qubits. Such hybrid devices may be useful in the quest
for scalable quantum computing. The experiment is quite technically challenging, however,
as it requires ions to trapped within 50 µm of the wire in order to for state exchange to occur
with a few milliseconds. The first results in this thesis were inspired by thinking about these
technical challenges.

In the first iteration of that experiment, the ions were trapped in a fairly standard surface
electrode RF Paul trap. A small 1 mm length wire was glued to an aluminum frame. The
frame itself was attached to a set of piezo stages so that it could positioned near two ions to
perform an ion-ion coupling exepriment. While working with that setup, the wire broke off
the holder inside the vacuum chamber. We decided at that point to re-design the experiment
in a more robust way. We formulated a new microfabricated trap design in which the coupling
wire was actually fabricated onto the surface of the trap. This re-design has been completed,
and initial trapping was recently successful.
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While re-designing the wire experiment, we started thinking about using chains of trapped
ions to study the quantum mechanics of energy transfer. Through a conversation with a
theory collaborator, Mohan Sarovar, we came up with the idea to implement vibrationally
assisted energy transfer (VAET) in a two-ion system. VAET is a phenomenon believed
to be important in biochemical processes such as photosynthesis, in which the transfer of
electronic excitation is enhanced by the presence of a bosonic environment provided by
molecular vibrations. In a trapped ion system, we emulated a model of this process. In our
emulation, the electronic state of the two-ion system corresponds to chemical energy, and
vibrational modes of the ion chain serve as the environment. We believe that this is the first
direct, isolated observation of vibrationally assisted energy transfer.

This thesis is organized as follows. In Chapter 2, I discuss the basics of the radio-
frequency Paul trap, the workhorse tool of ion trapping experiments. In Chapter 3, I
give an overview of the light-matter interactions which are necessary to undersatand the
experiments in this thesis. Chapter 4 discusses the experimental setup of the wire coupling
experiment.

In Chapter 5, I present the first experimental results of this thesis. In this Chapter, I
discuss a novel parametric method for swapping energy between any two vibrational modes
of a single-ion oscillator. This idea was originally developed to ease experimental design
constraints in the wire coupling experiment. Briefly, the vibrational modes of the trapped
ions which couple most strongly to the wire tend to be the hardest to interrogate via standard
laser-ion methods. This is because the vibrational mode which couples most strongly to the
wire is one which involves the ion moving normally to the surface the wire. The wire
then tends to block a laser beam which would have a wave-vector projection onto the ion’s
motion along this axis. However, in order to verify that coupling is in fact occuring, one
must monitor the energy flow into the oscillator modes. Therefore, we developed a scheme
to swap the energy between oscillator modes, so that the wire coupling can be detected by
interrogating a mode with better optical access. We also showed that this technique can be
used to laser-cool vibrational modes which have no overlap to the cooling laser wave-vector.
This method could then be used to cool all three vibrational modes of a trapped ion given
any laser orientation, lessening experimental design constraints considerably.

In Chapter 6, two experiments pertaining to surface noise are covered. I give a brief
overview of how noisy electric fields disturb the motional state of trapped ions. It has
been known for some time that noise arising from the metal surfaces of ion traps can be
a dominant decoherence source when ions are trapped of order 100 µm from the surface.
This effect must therefore be properly accounted for when performing the wire-coupling
experiment. While the specific mechanism of this noise is unknown and may vary from
experiment to experiment, I present a simple phenomenological model which should hold in
many cases. We study the directional dependence of electric field noise in ion traps and point
out that the electric field fluctuations can be larger in the direction normal to the trap surface
than parallel to it. By using a single ion as direction-sensitive noise sensor, we are able to
measure the direction in which the noise is the largest and moreover we use this effect to
determine whether the noise originates from material properties on the trap surface or from
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technical sources such as noisy voltage supplies. Finally, in this Chapter, I discuss another
experiment in which we measured the degree to which surface noise effects perturb the phase
coherence of the ion motion. This arises from the curvature of the potential induced by the
noise sources, perturbing the ion motional frequencies. We point out that this effect will
become important as ion traps are further miniaturized. We also use this effect to try to
determine the frequency spectrum of the surface noise sources which may give hints about
their physical origin.

Finally, Chapter 7 discusses our work on quantum-scale energy transfer. We engineer
vibrationally assisted energy transfer in an analog quantum simulator, and the transfer
dynamics in different regimes of the model. I also discuss prospects for scaling the simulation
to more complicated models, potentially to a regime which cannot be accessed by classical
simulation resources.
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Chapter 2

Ion traps

The experiments described in this document take place in different traps. Most of the results
are obtained using a micro-fabricated surface electrode Paul trap. The final chapter of results
are obtained in a more classic three-dimensional rf Paul trap. Nevertheless, the underlying
principle of operation is exactly the same in both cases.

2.1 Radio-frequency Paul traps

The first radio-frequency (rf) Paul trap for charged particles was realized in 1954 [48]. The
mechanism relies on the creation of a rapidly oscillating electric potential with a saddle point
somewhere in space. For a concrete picture, see Fig. 2.1. At the location of the saddle, the
instantaneous electric field is always zero since the potential gradient is zero. However, away
from the saddle point, the electric field amplitude increases as the distance from the saddle.
Under certain conditions discussed below, this situation can give rise to stable trapping of
a charged particle, in which the particle is drawn to the saddle. Given these conditions, the
oscillating potential can be modeled as a time-independent harmonic pseudo-potential–an
approximation we will use throughout this work. In what follows, I will develop the classical
equations of motion for a charged particle near such a potential saddle point. It is in fact
possible to solve the dynamics in a fully quantum-mechanical way [43], but this treatment
is considerably more complicated and does not seem to yield any new intuition.

To obtain the classical equation of motion for a charged particle of mass m and charge
Q in an rf Paul trap, we will follow the treatment given by [6]. First, we will assume an
electrode geometry such as that sketched in Fig. 2.1, where the electrodes labeled VRF have
the time-varying voltage V0 cos(Ωrft). In addition we will allow for some additional electrodes
which can apply any dc potential satisfying Laplace’s equation. We will take the ẑ direction
to be into the page and assume the rf electrodes extend far enough in this direction that the
electric field due to these electrodes is only in the xy-plane. We will call the ẑ direction the
“trap axis.” Finally, we will assume that the potential oscillates much more slowly than the
light travel time between electrodes, so that we can solve the problem quasi-statically (i.e.
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(a) (b)

Figure 2.1: Schematic cross-sections of typical rf Paul trap designs. Gold sections represent
electrodes which are assumed to extend into the page. (a) Classic 3D Paul trap. (b) Surface-
electrode trap. VRF represents a sinusoidally oscillating voltage at radio-frequency (30− 50
MHz, typically). The arrows sketch the electric field lines at the positive phase of the rf
cycle. In both cases, there is a point where the electric field is zero, and charged particles
may be trapped in this region. In (b), the grounded electrode at infinity does not actually
exist, but is used to demonstrate the boundary condition that the electric potential is zero
at infinity. Due to symmetry, the rf field provides no confinement in the direction normal to
the page. To achieve confinement in this direction, additional dc electrodes are introduced
which create a confinement in this direction.

by neglecting radiation). Then for some orientation of the x̂ and ŷ axes, the instantaneous
electric potential near the saddle point due to the rf electrodes is

Φrf =
V0

2

(
1 +

x2 − y2

`2

)
cos(Ωrft), (2.1)

where ` is a characteristic length scale of the trap geometry and we have taken the point
(0, 0, 0) to be the location of the saddle point. In addition, we allow for some dc potential
U(x, y, z), such that the total electric potential is

Φ(x, y, z, t) = U(x, y, z) +
V0

2

(
1 +

x2 − y2

`2

)
cos(Ωrft). (2.2)

This potential creates the field

E(x, y, z, t) = −V0

(
xx̂− yŷ

`2

)
cos(Ωrft) + Edc. (2.3)

Since we have already supposed that we can create arbitrary dc potentials, we will choose
Edc(0, 0, 0) = 0. i.e. we will assume that the saddle points of the rf and dc potentials coincide.
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If this is the case, then to lowest order, Edc varies quadratically around (0, 0, 0). It will be
convenient then to write (u = uxx̂+ uyŷ + uz ẑ):

Edc,i =
m

Q
(ωdc

i )2ui. (2.4)

Here we have just re-written the dc electric field in terms of the frequency a charge would
oscillate in a potential of that curvature.

The equation of motion for the charged particle is then:

müi = QEi, (2.5)

üi + (ai + 2qi cos(Ωrft))
Ω2

rf

4
ui = 0. (2.6)

The last line is the canonical form of the Mathieu equation, with

ai =
4(ωdc

i )2

Ω2
rf

qx =− qy =
2QV0

m`2Ω2
rf

qz =0.

If |qi| and |ai| are both � 1, the solution to the Mathieu equation takes the form:

ui(t) ≈ Ai cos(ωit+ φi)
(

1 +
qi
2

cos(Ω2
rf)
)
, (2.7)

with ωi ≈ 1
2
Ωrf

√
ai + 1

2
q2
i .

It is worth considering what this equation is telling us. The first thing this is telling
us is that the equation of motion is the same as that of a particle harmonically trapped
with secular frequency ωi. On top of that harmonic motion, there is a small amplitude of
driven motion at the frequency of the rf drive. This driven motion is called “micromotion”
throughout the literature. This micromotion results from the charge’s oscillations around
the potential minimum, during which it experiences regions of non-zero rf field. The rf field
generates a periodic force with frequency Ωrf , imposing micromotion on top of slower secular
trajectory.

The second thing to notice is the form of ωi. If we take, for instance, the x direction,
and write it out explicitly, we find

ωi ≈
√

(ωdc
x )2 +

Ω2
rf

8
q2
x. (2.8)

We therefore find that the equation of motion is approximately equal to the equation of
motion if a charge is placed in a dc field with frequency ωdc

i , and the rf field is replaced with



7

a harmonic pseudopotential of frequency Ωrfqx/
√

8. This is known as the pseudopotential
approximation, and throughout most of the rest of this work we will treat the effect of the
rf potential as a static pseudopotential.

A single trapped ion will have three normal modes of oscillation. In a linear trap geometry
(shown in Fig. 2.1), two modes will lie in the plane of the rf confinement, and it is standard
to refer to these modes as “radial modes.” The third direction is called the “axial mode.”

2.2 Static potential control

For several reasons, it is important to control the dc fields near the trapping location. One
reason is that, since the trap geometries we consider will have no rf confinement along the ẑ
direction, we need to apply a dc potential which confines a charge in this direction. Laplace’s
equation requires that if the dc field is confining along ẑ it must be anti-confining along at
least one other axis. However, the combination of dc potential plus rf pseudopotential can
still be confining in all three spatial axes as long as the pseudopotential curvature is strong
enough in the anti-confining directions.

It is also important to cancel stray dc fields which may exist in the trapping region due,
for instance, to nearby charged dielectric materials. If the dc field is not zero at precisely
the same location as the saddle point of the rf field, the combination of dc potential and
pseudopotential will move the trapping location out of the zero point of the rf field. While
this is tolerable to some degree (and in fact unavoidable at some level), this means that the
trapped charge experiences a driving force due to the rf field, modulating the ion’s motion at
the driving rf frequency. This effect is called “excess micromotion”–micromotion in excess of
the unavoidable modulation experienced if the rf and dc fields are perfectly aligned. Among
other problems, such driven motion can create difficulties in laser cooling if the modulation
amplitude becomes comparable to the laser wavelength.

In addition, it can also be useful to use dc potentials to tune the orientation of the
trapped charge’s harmonic oscillator modes with respect to the trap structure. We applied
such control in Sec. 6.3 to study electric field noise originating from trap electrode surfaces.

By placing and biasing electrodes near the trapping region, the dc potential near the
trapping region can be manipulated. However, it is not immediately clear how to generate a
particular potential landscape given some configuration of controllable electrodes. We need
a means to deterministically modify the potential in the trapping region. A thorough formal
treatment of dc potential control in ion traps is found in [44]. Here, I will give an overview
of the topic in less formal terms.

We need only to control the potential in a very small region around the rf saddle point,
and therefore we will therefore attempt to control the coefficients of a series expansion around
this point. Neglecting a constant offset, a general function defined in three dimensions will
have 9 independent parameters up to second order in spatial variation. An electric potential,
however, must obey Laplace’s equation (∇2Φ = 0), and so we expect 8 independent degrees
of freedom.
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The independent degrees of freedom will be the projections of the potential along some
set of basis functions (which are up to second order in space). The basis elements we seek are
functions f(x, y, z) satisfying ∇2f = 0–i.e. eigenfunctions of the Laplacian with eigenvalue
zero. This guarantees that superpositions of the basis functions also satisfy the Laplace
equation. One convenient set of basis functions satisfying this constraint is the real spherical
harmonics [44] (real because electric potentials must be real). For our experiments, we will
define basis functions as:

Ex = x

Ey = y

Ez = z

U1 = x2−y2
2

U2 = 2z2−x2−y2
2

U3 = xy
2

U4 = xz
2

U5 = yz
2

(2.9)

These basis functions are called “multipoles.” The Ei terms are of linear order in space
and therefore represent homogeneous electric fields. The Ui terms are electric quadrupoles,
modifying the curvature of the potential in the trapping region. To the current order of
approximation, any potential landscape can be expressed as a linear combination of these
multipoles. With complete control over these multipoles, it is possible to completely control
the electric field and potential curvature in the trapping region (subject to the stability of
the Mathieu equation, but this is not typically a problem).

In order to control the potential using some set of electrodes Ei, one needs to know the
potential due to each electrode, with all other electrodes grounded. This can be obtained
either by electrostatic simulation or some analytic approximation [63, 70]. The potential Φi

due to biasing Ei to voltage V i can be written

Φi(x, y, z) = V i

(
eix
r0

Ex +
eiy
r0

Ey +
eiz
r0

Ez +
ui1
r2

0

U1 + . . .

)
. (2.10)

r0 is a constant with dimensions of length. The choice of r0 corresponds to the setting the
units of the coefficients eix,y,z and uij. We typically set r0 = 1 mm. Due to the superposition
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Figure 2.2: CCD image of ∼ 60 ions trapped in one of the traps discussed in this work.

principle [32], given a set of voltages on all electrodes, the total potential Φ will be the sum

Φ(x, y, z) =
ex
r0

Ex +
ey
r0

Ey
ez
r0

Ez +
u1

r2
0

U1 + . . .

=
∑
i

Φi(x, y, z)

=
∑
i

V i

(
eix
r0

Ex +
eiy
r0

+ Ey
eiz
r0

Ez +
ui1
r2

0

U1 + . . .

)
. (2.11)

Provided that there are enough (i.e. ≥ 8) electrodes which generate linearly independent
fields, the potential can be completely controlled by choosing the set V i of bias voltages
to achieve the desired total potential. This can be done, e.g., by a matrix inversion or a
least-squares solution.

2.3 Multiple ions

The picture is somewhat more complicated if multiple ions are contained in a single trap
(Fig. 2.2). In this section, I will summarize the treatment of D. F. James [33]. The extra
complication arises from the Coulomb interaction between ions. This interaction leads to
coupling between the motion of the individual ions. In this case, the equations of motion
can be diagonalized, leading to a set of harmonic modes.

Under the typical assumption that the radial confinement is sufficiently strong, the most
energetically favorable condition is for the ions to form a line. It is helpful to define the the
system potential energy as V :

V =
∑
i

1

2
m
(
ω2
xx

2
i + ω2

yy
2
i + ω2

zz
2
i

)
+
∑
i,j

Q2

8πε0

1

|ri − rj|
. (2.12)

Here ri = (xi, yi, zi) is the (in general quantum) position of the ith ion. m and Q are the ion
mass and charge respectively. ωx, ωy, and ωz are the frequency of the external potential (dc
+ pseudopotential) in the x, y, and z directions. It is in general possible for these frequencies
to vary as a function of position. The sum is taken over the ions. The normal modes of the
ion chain are calculated by assuming the ion positions are given by small excursions around
the equilibrium points, i.e. ri = req

i + ~δi.
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Figure 2.3: Schematic drawings of the normal modes for a two ion chain. Arrows indicate
the displacements each ion undergoes in the corresponding normal mode. The abbreviation
“COM” stands for center-of-mass. In an ion chain, there are two radial COM and two radial
rocking modes-one for each radial direction of motion.

When discussing collective modes of an ion chain, we typically differentiate between
“axial” modes and “radial” modes. The axial modes refer to excitations along the trap
axis ẑ. The radial modes are modes in which the ions are displaced in the radial x̂ and ŷ
directions. The frequencies of the radial modes of the ion chain tend to be more closely
spaced as compared to the axial modes. This can be most easily understood by considering
the case of 2 ions in a line along the ẑ axis, separated by a distance d. If one of the ions is
displaced by δz, the distance between the ions changed by δz, and the change in the energy of
the configuration is δz

d
. This is the coupling energy of the axial motion, and also the splitting

between the two axial modes. By contrast, if an ion is displaced radially by δx, the distance
between ions is only changed by ≈ δx

2d
, and thus the energy change is much smaller than the

axial case.
For the results in this thesis, it is only necessary to understand ion chains of up to two

ions, and therefore a total of six harmonic modes, summarized in Fig. 2.3. When the total
confinement is harmonic, the axial COM mode has frequency ωz, and the axial stretch mode
has frequency

√
3ωz. We typically work with ωz ≈ 2π × 1 MHz, and therefore the stretch

mode would have the higher frequency 2π × 1.7 MHz. There are two radial COM modes,
with frequencies ωx and ωy, both typically in the range of 2π × (2 − 3) MHz. The x and y
radial rocking modes have frequencies

√
ω2
x − ω2

z and
√
ω2
y − ω2

z , respectively [56].
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Chapter 3

Light-matter interactions

Our primary means of interacting with trapped ions is through laser light. Lasers facilitate
our ability to cool ions’ motion, as well as measure and manipulate their internal states.

3.1 Ca+ internal structure

In our experiments, we work with the ion species 40Ca+. Since neutral 40Ca has two valence
electrons, the singly ionized species 40Ca+ has a single valence electron and therefore has a
hydrogenic level structure. It has no nuclear spin and therefore no hyperfine structure.

The ground state of 40Ca+ is a 2S1/2 level, which couples via an electric dipole transition
to the 2P1/2 level (Fig. 3.1. This 2S1/2 ↔2P1/2 transition is addressed with 397 nm light.
This transition enables Doppler cooling (Sec. 3.2) and state detection (Sec. 3.2). The excited
state spontaneously decays to either the 2S1/2 level (with probability 93.5%) or the 2D3/2

Figure 3.1: The 2S1/2 ↔2P1/2 and 2P1/2 ↔2D3/2 transitions. Double-headed arrows indicate
atomic transitions. Squiggly lines indicate spontaneous emission decay paths. As noted in
the main text, the P level decays about 6.5% of the time to the D level. Image used with
permission from P. Schindler.
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Figure 3.2: Internal structure of 40Ca+ displaying relevant energy levels. Arrows indicate
lasers used in the experiment to address the transitions. The light grey lines represent
Zeeman sublevels. Image used with permission from P. Schindler.

level (with probability 6.5%) [53]. In the case that the ion has decayed to the 2D3/2 state, it
may be repumped back to 2P1/2 with 866 nm laser light.

The experiments presented in this work also make use of additional internal levels (see
Fig. 3.2 for a summary). In addition to the dipole transition, we also make use of the
2S1/2 ↔2D5/2 electric quadrupole transition, with an excited state lifetime of 1.2 s [41], with
a sub-Hz natural linewidth. The long lifetime of this state permits the creation and manipu-
lation of coherent superpositions of sublevels of the S and D manifolds. For instance, pairs of
S and D sublevels have been used as qubits in quantum information processing experiments
with 40Ca+ [61]. Owing to technical sources of line broadening in our experiments, we do not
achieve this fundamental limit in practice. We experimentally observe the linewidth to be of
order 1 kHz. This narrow line allows the Zeeman structure of the 2S1/2 ↔ 2D5/2 transition
to become resolved at even quite small magnetic fields (we work, for example, at about 3 G
magnetic fields, where the sublevels are several MHz apart).

Since the lifetime of the 2D5/2 state is so long, it is not feasible to wait for spontaneous
emission to “reset” the ion back to the 2S1/2 state on demand. However, the 2D5/2 ↔ 2P3/2

transition may be addressed via a laser at 854 nm. Repumping the ion from the D state
back to the P state allows the ion to be reset into the ground state through spontaneous
emission from the P level.

3.2 Doppler cooling

In our experimental system, Doppler cooling is effected through a combination of 397 nm
and 866 nm laser light, as indicated in Fig. 3.1. The excited state lifetime of the 2P1/2 level
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is about 7 ns [35], significantly faster than the ion motional oscillation period (on the order
of 0.5-2 µs). Thus, during an absorption-emission cycle on this transition, the ion velocity
is approximately constant. This justifies a semi-classical treatment such as that presented
in [43] or [56], in which the effect of the 397 nm laser is treated as a radiation pressure force
depending on the ion’s velocity.

Although a single ion has three normal modes of motion, the radiation pressure force can
be understood as acting on each mode independently. Therefore it is sufficient to consider
interactions with only a single mode Consider an ion irradiated with a single 397 nm cooling
beam with wave-vector k. Assume that the cooling beam is oriented along a particular
normal mode of motion. In this approximation, we assume that the ion receives an impulse
∆p = ~k into the mode each time it absorbs a 397 nm photon. Meanwhile, each decay event
is followed by spontaneous emission which transfers momentum into a random direction, with
an average value of zero momentum transfer on emission. Most decay events will return the
ion to the 2S1/2 level, but will occasionally leave the ion in the 2D3/2 state, in which it will
no longer interact with the cooling beam. In order to continue interacting with the cooling
beam, the ion must then be repumped to the 2P1/2 with an 866 nm laser. The average force
is equal to the average rate of momentum change, i.e.

F =

〈
dp

dt

〉
= ~kΓρee, (3.1)

where Γ is the decay rate out of the excited state and ρee is the time-independent probability
to find the ion in the excited state. The excited state population depends on the laser detun-
ing ∆ from the atomic resonance in the laboratory frame, the velocity-dependent Doppler
shift of the resonance frequency (kv, with v the ion velocity), strongly the atomic resonance
is driven. It is common to quantify how strongly a laser is driving an atomic transition in
terms of the saturation parameter s = 2|Ω|2/Γ2, where Ω is the on-resonance Rabi frequency.
In the weak excitation (s→ 0) limit, ρee takes the Lorentzian lineshape [43]:

ρee =
s/2

1 +
(

2(∆−kv)
Γ

)2 . (3.2)

∆ − k · v appears in the line above because it is the laser detuning in the ion’s reference
frame. We can calculate the cooling rate Ėc (the rate heat is removed from the ion’s motion)
by linearizing the force about small velocities:

F =~kΓ
s/2

1 +
(

2(∆−kv)
Γ

)2 (3.3)

=F0 +
dF

dv
v (3.4)

=F0

(
1 +

8k∆

Γ2 + 4∆2
v

)
, (3.5)
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with F0 = ~kΓ s/2
2+8∆2/Γ2 .

The work done on the ion by the radiation pressure force is Fdx through an infinitesimal
displacement of the ion, and therefore the cooling rate is

Ėc = 〈Fv〉 (3.6)

=

〈
F0

(
1 +

8k∆

Γ2 + 4∆2
v

)
v

〉
(3.7)

=F0
8k∆

Γ2 + 4∆2
〈v2〉. (3.8)

As with any cooling process, the cooling limit is reached when the cooling rate is equal
to the heating rate. We claimed earlier that each absorption/emission cycle has 〈∆p〉 = 0,
i.e. that no momentum is transferred on average. However, it is not true that 〈(∆p)2〉 = 0–
multiple iterations of the absorption/emission cycle cause the ion’s momentum distribution
to diffuse as a random walk. This happens both during absorption and during emission.
Although the momentum kicks during absorption are all in the same direction, they occur
at random times with respect to the ion’s trajectory, leading to diffusion. Also, the emission
events occur in random directions, also causing the momentum distribution to diffuse. Since
the process is a random walk, 〈(∆p)2〉 ∼ (~k)2N , where N is the number of photon scattering
events.

Following [43], the effect of all of this can be incorporated by taking

Ėh =
1

2m

d

dt
〈p2〉 (3.9)

=
1

2m
(~k)2Γρee(v = 0)(1 + ξ), (3.10)

where ξ is a geometrical factor taking the value 2/5.
Setting Ėh = Ėc and making the thermodynamic association m〈v2〉 = kBT , we find a

minimum temperature T = ~Γ
4kB

(1 + ξ), achieved for ∆ = Γ/2. For a 40Ca+ ion, taking
Γ = 1/(7 ns), this corresponds to an average motional occupation of about 6 quanta at a
2π × 1 MHz oscillation frequency.

The interpretation of temperature

It is worth discussing what it meant by “temperature” in the case of trapped ion experiments,
as we deal only with one or a very small number of individual trapped ions. Since we prepare
the motional state of ions via an incoherent process (e.g. Doppler cooling), one might expect
that after state preparation, the vibrational modes of the ions are left in a set of well-defined
quantum states, i.e. {n1, n2, n3, } = {3, 8, 1}.

Indeed, this is the view we typically take in experiments–that after cooling, the motional
state of the ions is prepared to some particular quantum state in the energy eigen-basis.
However, we usually repeat our measurements 100-1000 times in order to obtain measure-
ment statistics. The interpretation of temperature that I will take throughout this work is
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Figure 3.3: Electronic energy levels of 40Ca+ relevant to coherent operations with the 729
nm laser. The light grey lines represent Zeeman sublevels. Squiggly line is a spontaneous
emission decay path. Image used with permission from P. Schindler.

to consider that the motional state of the ions is prepared to a random initial state in each
iteration of the experiment, but that the random initial state follows a Boltzmann distribu-
tion characterized by some temperature, or equivalently, some average motional occupation
number.

3.3 Coherent operations and resolved sidebands

Coherent operations in our system take place on the 2S1/2↔ 2D5/2 transition. This transition
is dipole-forbidden, but allowed via an electric quadrupole interaction whereby the orbital
angular momentum of a laser light field allows the atom to undergo angular momentum
change of ∆` = 2. While these transitions are on the order of 106 times slower than dipole
allowed transitions (for the same laser intensity), nevertheless the line can be driven with
Rabi frequencies exceeding 1 MHz for ∼ 1 mW of laser power focused to 20 µm.

The relevant electronic energy levels are shown in Fig. 3.3. In a magnetic field, the 2S1/2

level is Zeeman split into two sublevels, and the 2D5/2 level is split into 6 sublevels. In
practice these sublevels are separated by about 1 MHz, with a magnetic field of about 3 G.

The magnetic quantum number change allowed by an electric quadrupole transition is
|∆mj| ≤ 2. This means a total of 10 lines can appear in optical spectroscopy of the S ↔ D
transition.

Optical pumping is done via illuminating the ion with both the 854 nm laser and tuning
the 729 nm laser resonant with the |S,mj = +1/2〉 → |D,mj = −3/2〉 transition. The
854 nm laser repumps the ion out of the D state back into the S state via spontaneous
emission out of the P state, whereupon it can decay to either mj = ±1/2. However, once
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the |S,+1/2〉 state is no longer populated, the ion becomes dark to the 729 nm laser light,
at which point the ion is optically pumped into the pure state |S,−1/2〉.

In order to analyze the laser-ion interaction, it is helpful to write down a Hamiltonian
describing the system. We will roughly follow the derivation of [43]. For coherent operations
on single ions, we typically consider only one set of Zeeman sublevels, for instance the set
consisting of {|S,−1/2〉, |D,−1/2〉}, which we shorten to {|S〉, |D〉}. This is the two level
atom approximation. The states |S〉 and |D〉 can form a qubit, due to the long lifetime of
superpositions of these levels. If we restrict our analysis to these two states, the Hamiltonian
for the qubit plus the motion of the ion can be written

H0 =
~∆

2
σz +

∑
i

~νiaia†i . (3.11)

Here, ∆ is the energy splitting of the states |S〉 and |D〉, and σz is the Pauli spin operator.
The sum is taken over the vibrational degrees of freedom of the ion (i.e., in the pseudopoten-
tial approximation), and νi are the vibrational frequencies (typically on the order of hundreds
of kHz to a few MHz). The most basic form of the laser-ion interaction is

HLI =
~Ω

2
ei(kxi cos(θ)−ωLt+φ)σ+ + h.c., (3.12)

where k = 2π/λ is the length of the laser wave-vector, xi is the displacement of the ion’s ith

vibrational mode, θ is the angle between the laser wave-vector and the xi direction, ωL is
the laser frequency, and φ is the phase of the laser light field. Ω is the coupling strength of
the laser to the electronic transition, proportional to the laser field intensity and σ+ is the
Pauli spin raising operator. h.c. denotes Hermitian conjugation.

Under the assumption that the ion is sufficiently cold that its wavefunction extent is
much smaller than the laser wavelength, we can treat kx as a small parameter and expand
the exponential as

ei(kxi cos(θ)−ωLt+φ) ≈(1 + ikxi cos(θ))ei(−ωLt+φ) (3.13)

=

(
1 + ik cos(θ)

√
~

2mνi
(ai + a†i )

)
e−i(ωLt−φ), (3.14)

where m is the ion mass. When kx cos(θ) can be treated as a small parameter, the ion is

said to be in the Lamb-Dicke regime. The quantity k cos(θ)
√

~
2mνi
≡ ηi, and ηi is called the

Lamb-Dicke parameter. We typically work well within this regime: A Ca+ ion with 1 MHz
oscillation frequency has a spatial wavefunction extent of about 9 nm, much smaller than
the 729 nm wavelength, justifying the Lamb-Dicke approximation throughout most of this
work.

We can plug our simplified exponential back into Equation 3.12 to obtain

HLI ≈
~Ω

2
σ+
(

1 + iηi(ai + a†i )
)
e−i(ωLt−φ) + h.c. (3.15)
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At this point we transform into the interaction picture, using Equation 3.11 as the free
Hamiltonian. We obtain:

H
(i)
LI =

~Ω

2
σ+ei∆t

(
1 + iη(aie

−iνit + a†ie
iνit)
)
e−i(ωLt−φ) + h.c. (3.16)

This is the laser ion interaction to first order in ηi. By tuning the laser frequency ωL, cer-
tain parts of this Hamiltonian may be selected via the rotating wave approximation (RWA):

H
(i)
LI/~ ≈


Ω
2
eiφσ+ + h.c if ωL = ∆

iηiΩ
2
eiφσ+ai + h.c. if ωL = ∆− νi

iηiΩ
2
eiφσ+a†i + h.c. if ωL = ∆ + νi

(3.17)

The first piece of Equation 3.17 occurs when the laser frequency is resonant to the splitting
between states |S〉 and |D〉. This term causes population to oscillate between the |S〉 and
|D〉 with Rabi frequency Ω.

In the Bloch sphere picture, with the south pole being state |S〉 and the north pole |D〉,
this interaction causes the ion’s Bloch vector to rotate about a vector in the xy plane. The
particular vector is defined by the choice of laser phase φ, and given by n̂ = cos(φ)x̂+sin(φ)ŷ.
We often call such a transition a “carrier” transition, in contrast to the “sideband” transitions
discussed below.

The second and third lines of Eq. 3.17 are often called “sideband” transitions. They occur
when the laser is either red or blue of the electronic transition by the frequency corresponding
to one motional quantum. These transitions flip the ion’s electronic state while also adding
or removing a motional quantum. Tuning the laser to the “red sideband” generates the
interaction ~ηiΩ

2
(σ+ai +σ−a†) (setting the laser phase to zero). On the “blue sideband”, the

interaction is ~ηiΩ
2
(σ+a†i + σ−ai). Since the matrix elements of ai scale with

√
n, where n is

the vibrational quantum number, the Rabi frequency of these transitions is
√
nηiΩ on the

red sideband and
√
n+ 1ηiΩ on the blue sideband.

In general, there exist sideband transitions for every vibrational mode of an ion crystal,
e.g. each carrier transition in a single trapped ion has three red and three blue sidebands
to first order in η. There are also second and higher order sidebands in which, for instance,
two vibrational quanta are added or removed. See Fig. 3.4 for a summary of the first order
transitions.

3.4 Sideband cooling

Doppler cooling is capable of preparing trapped ions into the Lamb-Dicke regime, with
average motional occupations of less than 10 quanta for typical trap frequencies of 1-2 MHz.
However, this process is fundamentally limited by the linewidth of the cooling transition. A
second stage of cooling, called “sideband cooling”, can cool ions into the ground motional
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|S, 0〉
|S, 1〉

|S, 2〉
|S, 3〉

|D, 0〉
|D, 1〉

|D, 2〉
|D, 3〉

Ω

ηΩ

√
2ηΩ

√
3ηΩ

Figure 3.4: Carrier and first order sideband transitions in the two level atom (plus har-
monic motion) approximation. Energy levels are in the basis {|S〉, |D〉} ⊗ {|ni〉} where ni
is the motional quantum number of oscillator mode i. In general there is one level for each
combination of oscillator states.

Figure 3.5: Schematic drawing of the sideband cooling process.
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state with high probability by taking advantage of the significantly smaller linewidth of the
quadrupole S1/2 ↔D5/2 transition.

In the sideband cooling process, the ion is illuminated with laser light at 854 nm and
729 nm. The 729 nm light is resonant to the red sideband. This is shown schematically
in Fig. 3.5. The red sideband transition causes the ion to undergo an |S, n〉 → |D,n− 1〉
transition. The 854 nm repumper “resets” the electronic state of the ion back to |S〉 by
promoting the electron to the P3/2 state, from which it spontaneously decays back into
|S〉. In the Lamb-Dicke regime, most of the spontaneous decays do not cause heating (see
below). Crucially, the ion stops absorbing photons when it reaches the ground (|S, 0〉) state–
this can be seen in the second line of Eq. 3.17. If the motional state of the ion ion is |0〉,
HLI = 0 because ai|0〉 = 0. The presence of the repump laser couples the |D〉 and |P 〉 states,
artificially broadening the linewidth of the carrier and sideband transitions.

As in Doppler cooling, the linewidth of the cooling transition poses the fundamental limit
to the lowest achievable temperature [56]. If the ion reaches the ground state, it may still
absorb photons due to the finite, however small, linewidth of the carrier transition. Such
an absorption event would take the ion from |S, 0〉 → |D, 0〉. From |D, 0〉, the ion will be
pumped to the P level and spontaneously decay to the S state by emitting a 393 nm photon.
The chance that this decay process causes heating may be analyzed with Fermi’s golden
rule, in which the transition probability is proportional to the Hamiltonian matrix element
connecting the states [8].

Spontaneous emission is caused by an electric dipole interaction between the ion and the
background electromagnetic field, HAF . In order to compare the fraction R of spontaneous
decays which heat the ion as compared to those which do not, we do not need to fully derive
the theory of spontaneous emission; we need only work out the ratio of matrix elements:

R =
|〈P, 0|HAF |S, 1〉|2
|〈P, 0|HAF |S, 0〉|2

∼ |〈P, 0|e
iη̃(a+a†)|S, 1〉|2

|〈P, 0|eiη̃(a+a†)|S, 0〉|2 = η̃2, (3.18)

where η̃ is the Lamb-Dicke parameter for the 393 nm photon emitted during spontaneous
emission, numerically about 0.17 for a 1 MHz oscillation frequency. Heating occurs when the
carrier transition is driven off-resonantly by the 729 nm light resonant to the red sideband
transition, and occurs at a rate proportional to Γ2. The heating rate is then the rate of
carrier scattering times R. The limit for sideband cooling may then be analyzed using rate
equations [56], arriving at the result

n̄i =
Γ2

4ν2
i

((
η̃

ηi

)2

+
1

4

)
, (3.19)

with n̄i the average occupation number of mode i, and Γ the linewidth of the cooling tran-
sition. Γ here should not be taken to be the natural linewidth (i.e. 1 Hz), but rather the
linewidth of the transition with the repump light applied. By choosing the cooling linewidth
much smaller than the trap frequency, the ion can be prepared in the ground state with
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high probability. With Γ = 100 kHz and νi = 1 MHz, this would give a temperature limit
of n̄ = 0.01. However, this idealized derivation does not take into account other heating
sources such as noisy electric fields from the trap electrodes. In the experiments discussed
in this work, these sources heat the ion at rates between 10 and 200 quanta/s. At the high
end, this limits the practically achievable minimum temperature to n̄ ≈ 0.2.

Temperature measurement

The average motional occupation may be determined by spectroscopy of the sidebands [43].
The difference between red and blue sideband excitation at constant time encodes the desired
information.

Consider the following procedure. First, prepare via some cooling mechanism the vibra-
tional modes of the ion to some thermal distribution. Suppose that the vibrational mode of
interest has mean thermal occupation n̄. Then, illuminate the ion with light resonant to the
red sideband for some fixed time t and measure the probability to find the ion in the D state,
PD,r. Then, repeat the preparation process, and illuminate the ion on the blue sideband for
time t, and again measure the D state probability, PD,b.

Illuminating the ion on one of the sidebands drives a family of transitions |n〉 → |n± 1〉
at the same time, with an n dependent Rabi frequency. Population is assumed to be inco-
herently distributed along the motional ladder according to Boltzmann statistics. Therefore
the D state probability is the incoherent sum of all of these processes, weighted by the pop-
ulation in the initial states. When the 729 nm laser is resonant to the red sideband, we
know from Eq. 3.17 that each transition |S, n〉 → |D,n− 1〉 occurs with the Rabi frequency√
nηiΩ, and therefore:

PD,r =
∞∑
n=1

Pn sin2
(√

nηiΩt
)

(3.20)

=
∞∑
n=1

(
n̄

n̄+ 1

)n
sin2

(√
nηiΩt

)
(3.21)

=
n̄

n̄+ 1

∞∑
n=0

(
n̄

n̄+ 1

)n
sin2

(√
n+ 1ηiΩt

)
. (3.22)

Meanwhile, with the laser resonant to the blue sideband (assuming the same laser intensity
as above), we can use Eq. 3.17 to obtain the D-state probability in this case as well:

PD,b =
∞∑
n=0

Pn sin2
(√

n+ 1ηiΩt
)

(3.23)

=
∞∑
n=1

(
n̄

n̄+ 1

)n
sin2

(√
n+ 1ηiΩt

)
. (3.24)
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In Eq. 3.21 we use the fact that for a harmonic oscillator with average thermal occupation
n̄, the occupation probability for the state n is Pn =

(
n̄
n̄+1

)n
[21]. For fixed excitation time

t, the ratio of red to blue sideband heights takes a simple form which depends only on the
mean thermal occupation n̄:

PD,r
PD,b

=
n̄

n̄+ 1
. (3.25)

Thus, the thermal occupation can be extracted by comparing the red and blue sideband
heights. This method works as long as the sideband heights are experimentally distinguish-
able. An estimate of this maximum measurable temperature can be extracted by assuming
the blue sideband height is of order PD,b = 0.5. With 100 experimental repetitions (a typical
value), the statistical error on this parameter will be δPb = 0.5/

√
100 = 0.05. At the highest

measurable temperatures, the red sideband height PD,r is also of order 0.5 and therefore
δPr ≈ δPb = 0.05. To fully resolve the peak height, we should require PD,b − PD,r ≈ 2δPb,
so that statistical fluctuations in the red and blue sideband heights do not overlap. Using
this condition, we get PD,r = 0.4, implying that n̄max = 4 is the highest measurable thermal
occupation by this method.

3.5 Electron shelving

We have until now ignored how to measure the ion in the {|S〉, |D〉} basis. For this process
we use a technique called electron shelving [16]. The ion is illuminated with both 397 nm
and 866 nm light. If the ion is in the |S〉 state, it will scatter photons and emit 397 nm
photons from the dipole transition. Within 5 ms, we can typically detect up to 30 photons
from a single ion on a photomultiplier tube (PMT). On the other hand, if the ion is in the
|D〉 state, it will not interact with either 397 nm or 866 nm light, and therefore will not
fluoresce. Thus, by applying the laser light and counting detected photons from a PMT
for several milliseconds, the ion can be projectively measured to be in either the |S〉 or |D〉
state. The process also works for multiple ions if a charge-coupled device (CCD) camera is
used for the readout. In that case, the camera is exposed for several ms, and the state of
each ion in the chain is determined by analyzing the resulting image.

3.6 Engineered interactions

In the remainder of this chapter, I will discuss a few more light-matter interactions which are
used in the experiments described in this thesis. These interactions are more complicated
than the interactions discussed above, in the sense that the form of their interaction with
the ion is not immediately obvious from the basic laser-ion Hamiltonian. For instance, they
often involve illumination of the ion with bichromatic laser light.
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Here, we will mostly concern ourselves with obtaining “effective Hamiltonians.” An effec-
tive Hamiltonian is a Hamiltonian operator which faithfully describes the dynamics of the
laser-ion interaction.

Coherent motional displacement

One such interaction is coherent displacement of the motional state via the 397 nm dipole
transition. This method is discussed in [52]. Using the same notation as Section 3.2, illumi-
nating the ion with 397 nm light at saturation produces the radiation pressure force

F =~kΓρee (3.26)

=~kΓ/2 (3.27)

This force may be modulated, for instance, by switching an acousto-optic modulator
(AOM) on and off at a certain frequency ωm. If ωm ≈ νi, where νi is one of the vibrational
frequencies of the trapped ion, this force can affect a coherent displacement of the motional
state. If the laser is operated at saturation, this method can achieve a displacement amplitude
|α|2 = 100 in less than 10 µs [52]. This is useful, among other things, for probing the trap
frequency to high precision.

ac Stark shift

In the two level atom picture with states |S〉, and |D〉, the energy splitting between the states
can be modified by applying a 729 laser beam with coupling strength Ω off-resonant to all
carrier and sideband transitions. In the two level atom picture, if the beam is detuned by ∆
from the carrier transition, the presence of such a beam may be described by the interaction
Hamltonian term [18]:

HI =
~Ω2

4∆
σz. (3.28)

In a real atom, the ac Stark shift has a more complicated form, including contributions from
all carrier and sideband transitions as well as the far off-resonant dipole transitions which
are roughly of the same order as the contribution above. However, the energy shift may be
determined experimentally [24].

Mølmer-Sørensen interaction

Two ions in the same trap have an effectively negligible interaction between their electronic
state owing to the several micron distance between the ions. However, an interaction be-
tween the ions’ electronic states may be engineered using the Mølmer-Sørensen technique [65,
57]. This method has been used as an entangling gate in quantum information processing
experiments [61], and is referred to as a “Mølmer-Sørensen gate” in this context.
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√
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√
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Figure 3.6: Simplified sketch of the Mølmer-Sørensen interaction. As drawn here, the system
is initialized into some combination of |SD, n〉 and |DS.n〉. Take the initial state to be
|DS, n〉. From the bluer of the two laser tones at frequency ω+, the system may undergo a
two photon Raman transition from |DS, n〉 → |SD, n〉, following the blue path in the sketch.
Similarly, the system can follow the red path. Due to a quantum interference between the
two paths, there is no n dependence on the transition rate. Transitions to |SS〉 state also
occur but are left off for clarity.

In the simplest picture, consider two ions in the same trap. Both ions participate in some
common vibrational mode with frequency ν (the “bus mode”), and both have the same qubit
splitting ∆. The bare Hamiltonian is then

H0 =
~∆

2

(
σ(1)
z + σ(2)

z

)
+ ~νa†a. (3.29)

Now suppose both ions are equally illuminated with a bichromatic 729 nm laser beam. The
laser beam has two tones with frequencies ω± = ∆± (δ + ν) (see Fig. 3.6), i.e., these tones
are nearly resonant with the red and blue sidebands of the ion crystal, but are detuned by
δ � ν. Each tone has coupling strength Ω. In the experiments described here, we will always
work in the regime ηΩ� δ–that is, in the limit where the laser tones cannot directly excite
the sideband transitions. We call this the “adiabatic regime.” In this regime, the process
may be described as a Raman transition.

In this limit, the effective Hamiltonian takes the form [57]

HI =
~ηΩ2

2(ν − δ)σ
(1)
x ⊗ σ(2)

x . (3.30)

This is a Hamiltonian which drives collective flips between |SD〉 ↔ |DS〉, or |SS〉 ↔ |DD〉,
where |xy〉 means that ion one is in state |x〉 and ion two is in state |y〉. Surprisingly, the
effective Hamiltonian contains no n dependence. This is due to a quantum interference
between the two paths shown in Fig. 3.6 [65]. Each of the two paths can be thought of as
a two-photon Raman transition. The effective two-photon Rabi frequency on the blue path
is proportional to ηΩ2(n + 1), and on the red path is proportional to ηΩ2(n). However, in
the blue path the lasers are blue detuned from the intermediate state |DD,n+ 1〉, and in
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Figure 3.7: Left: Populations in the electronic states |SS〉 (blue curve and points), |DD〉
(green curve and points), and |SD〉 or |DS〉 (red data points). Approximately equal popu-
lations are achieved at the gate time τ = 0.18 ms. Right: Parity (defined in the main text)
of the two qubit state as a function of the analysis phase angle after the Mølmer-Sørensen
interaction is applied for 0.18 ms. The oscillation is fit to a sine function yielding a measured
contrast of 0.87(3). The parity contrast, taken together with the populations in the left plot,
give the fidelity F ≈ 0.90 to a Bell state. These data were taken by Eli Megidish.

the red path are red detuned from the intermediate state |DD,n− 1〉, and therefore the two
paths interfere destructively. The result is that the n-dependence in the total transition rate
drops out. This means that the interaction can entangle the electronic states of two ions
even when the mediating mode is in a thermal state [40].

A perfect Mølmer-Sørensen interaction, when applied to the state |SS〉, causes the two-
ion electronic state to oscillate between |SS〉 ↔ |DD〉. When the state is in between |SS〉
and |DD〉, the entangled Bell state |Φ〉 = 1√

2

(
|SS〉+ eiφ|DD〉

)
is produced.

Fig. 3.7 shows the population dynamics and phase coherence of resulting state when the
interaction is implemented in our apparatus. The population dynamics is shown to mostly
oscillate between |SS〉 and |DD〉 states, with a few percent of leakage out of this subspace,
most likely due to unwanted laser phase noise driving spurious electronic state flips.

The phase coherence of the entangled state may be analyzed by applying the bichromatic
Mølmer-Sørensen beams until the |SS〉 and |DD〉 populations are equal. Then, a global π/2
rotation is applied with phase θ relative to the entangling interaction. After an electron
shelving readout of both ions, the parity is analyzed (defined in this case as P |SS〉 =
P |DD〉 = 1, and P |SD〉 = P |DS〉 = 0). The parity is recorded as a function of the analysis
pulse phase, and contrast c of the parity oscillations probes the phase coherence of the
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Figure 3.8: Mølmer-Sørensen gate interaction, showing spin flipping between the states |SD〉
(blue) and |DS〉 (red). Gate errors-when the system is found in either |SS〉 or |DD〉 are
shown in green. Each data point is the average of 100 experimental repetitions.

resulting state. The fidelity to the Bell state can be measured as [58]

F =〈Φ|ρ|Φ〉 (3.31)

=
1

2
(PSS + PDD + c) , (3.32)

where ρ is the (mixed) state produced by the laser-ion interaction.
The interaction also works to induce oscillations between |SD〉 ↔ |DS〉. A typical scan

is shown in Fig. 3.8. In that scan, the ion was first prepared into the state |SD〉 via a local
π-pulse on one ion before the bichromatic laser pulse was turned on. The ions were measured
in the {|SS〉, |SD〉, |DS〉, |DD〉} basis on a CCD camera.

Spin-motion entanglement

The final interaction we need to discuss we will call the σzx interaction, generating entan-
glement between the electronic state of the ion and the motional state [38].

In a similar flavor to the previous section, this interaction is generated by illuminating
an ion with a bichromatic laser field, having frequencies ω+ = ∆ + ν + δ and ω− = ∆ − ν,
and δ � ν. ν is the frequency of some vibrational mode.

Since the laser tones are far in frequency from any atomic resonance, this interaction can
be considered a Raman transition on the motional state (see Figure 3.9), as the two tones are
separated in frequency by ≈ ν. Therefore this interaction moves |n〉 → |n± 1〉, suggesting
that its effective Hamiltonian on the motion is proportional to x = a+ a†.
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|S, 0〉
|S, 1〉

|D, 0〉
Ω1

Ω2

δ

Figure 3.9: Sketch of the σzx interaction. On resonance (i.e. ν = 0), the interaction moves
population in the motional state from |n〉 → |n± 1〉, while keeping the electronic population
the same.

The basic laser-ion interaction can be determined from applying Eq. 3.12 twice (once for
each laser tone). This yields:

H/~ =

(
Ω1

2
e−i(ν/2+δ+φ1)t +

Ω2

2
ei(ν/2−φ2)t

)
×
(
1 + iη(ae−iνt + a†eiνt)

)
σ+ + h.c. (3.33)

Here, Omega1 (Ω2) and phi1 (φ2) are the carrier Rabi frequency and phases of the laser
tone with frequency ω+ (ω−). The time evolution of the above laser-ion Hamiltonian can be
directly integrated, leading to the effective interaction

H =
~ηΩ1Ω2

2ν
σz
(
ae−iδt + a†eiδt

)
(3.34)

=
~κ
2
σz
(
ae−iδt + a†eiδt

)
. (3.35)

This Hamiltonian is an interaction-picture Hamiltonian, related to the laboratory reference
frame by the transformation matrix

U =ei~∆t/2σzei~νta
†a, (3.36)

thus accounting for evolution from the “free” Hamiltonian H0 (Eq. 3.11). We could instead
choose a different interaction picture, in which the free Hamiltonian is

H ′0 =
~∆

2
σz + ~(ν − δ)a†a). (3.37)

With that choice of interaction picture, our effective interaction would be written

H =
~κ
2
σz
(
a+ a†

)
+ ~δa†a, (3.38)
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a form we will use in Chapter 7.
This interaction generates a coherent displacement of the ion’s motional state dependent

on the electronic state, leading to entanglement of the electronic state with the ion motion
if the motional state is pure. It is easiest to first understand the case where the motion is
prepared in ground state, and δ = 0. Then, under this interaction,

|S, 0〉 →|S, α(t)〉 (3.39)

|D, 0〉 →|D,−α(t)〉, (3.40)

where α(t) = κt
2

.
In general, for all choices of δ, the time evolution operator is (up to an overall phase)

U = D(α(t))|S〉〈S|+D(−α(t))|D〉〈D|, (3.41)

with α(t) = κ
2δ

(
1− eiδt

)
. The ion’s motional wavepacket is split according to the the elec-

tronic state. The two branches of the wavepacket follow different trajectories in phase space
but rephase at time 2π

δ
[38].

The dynamics can be probed with a Ramsey-style experiment on a single ion. First, a
π/2 pulse is applied to the electronic state (perhaps with detuning ∆), generating the super-
position state (|S〉 + |D〉)/

√
(2). Then the bichromatic laser beams are applied generating

the Hamiltonian in Equation 3.38 for an interaction time τ . Finally, a second π/2 pulse is
applied to the electronic state, and the D-state probability is measured (i.e. 〈|D〉〈D|〉).

With the vibrational mode of interest prepared in the ground state of motion, the first
π/2 pulse generates the state (|S, 0〉 + |D, 0〉)/

√
2. With the bichromatic beams turned on,

this state evolves to the state (|S, α(τ)〉 + ei∆t|D,−α(τ)〉)/
√

2. The phase evolution ∆ is
due to the detuning of the Ramsey pulses from the carrier transition. The second π/2 pulse
yields:

1

2

(
|S, α(τ)〉+ |D,α(τ)〉+ ei∆τ |S,−α(τ)〉 − ei∆τ |D,−α(τ)〉

)
. (3.42)

Measuring the expectation value of the projector PD = |D〉〈D| gives:

〈PD〉 =
1

4

(
〈α(τ)| − e−i∆τ 〈−α(τ)|

) (
|α(τ)〉 − ei∆τ |−α(τ)〉

)
(3.43)

=
1

4

(
2− e−i∆τ 〈−α(τ)|α(τ)〉 − ei∆τ 〈α(τ)| − α(τ)〉

)
(3.44)

=
1

2
(1− cos(∆τ)〈α(τ)| − α(τ)〉). (3.45)

With the ion initially in the ground state of motion, the experiment is a probe of the
overlap between the two branches of the ion’s wavefunction with opposite coherent displace-
ments. If the vibrational mode is not initially in the ground state, but rather in a thermal
state, the situation is somewhat more complicated. The time evolution operator is still the
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Figure 3.10: D-state probability vs interaction time τ of a Ramsey-style experiment to probe
the dynamics of the σzx interaction (details of the experiment in the main text). Top and
bottom plots are for similar experimental parameters, except that the thermal occupation
n̄ of the ion’s vibrational mode is varied. In the top plot, the motion is prepared near the
ground state with n̄ = 0.5. In the bottom graph, the ion is left at the Doppler-cooled value of
n̄ = 10. Solid lines are a fit to a numerical simulation of the experiment where all Hamiltonian
parameters are varied. Top: κ = 2π × 1.9 kHz, δ = 2π × 3.3 kHz, ∆ = 2π × 11.8 kHz.
Bottom: κ = 2π × 1.6 kHz, δ = 2π × 3.3 kHz, ∆ = 2π × 12.0 kHz.

one described in Equation 3.41, but the displacement operators act on thermal states. An
experimental comparison of these two situations is shown in Fig. 3.10. With the ion pre-
pared near the ground state, the Ramsey signal oscillates at ∆, while slowly losing contrast
as the two different paths become more orthogonal. In the second case, the ion’s motion is
prepared to a mean thermal occupation of n̄ = 10, and in that case the Ramsey signal is
almost immediately dephased. This shows that small coherent displacements of a thermal
Harmonic oscillator state yield a nearly orthogonal state. Contrast revivals occur when the
motional wavepackets recombine (τ = 2π/δ), at a time independent of the motional state of
the oscillator.
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Chapter 4

Experimental setup

The experiments described in this thesis took place in different trapping setups. The work
in Chapter 5 and Sec. 6.3 took place in a microfabricated surface electrode trap. This
experimental setup was built in part by the present author, as well as by Sankaranarayanan
Selvarajan and Nikos Daniilidis. The work in Chapter 7 was carried out in a 3D Paul
trap, designed and built by Thaned Pruttivarasin and Michael Ramm, and the experimental
details for that trap are discussed in their PhD theses.

This Chapter is organized as follows: Secs. 4.1 and 4.2 cover laser and imaging setups
which are general to all experiments in the laboratory. Following that are details of the
microfabricated trap setup and vacuum chamber (Secs. 4.3 and 4.5). Finally, we discuss
experimental improvements to the 3D trap setup, namely the optical layout to implement
laser-based quantum gates (Sec. 4.6) and an active feedback loop to stabilize radial trap
frequencies (Sec. 4.7).

4.1 Injection locked laser

The performance of high-fidelity quantum operations on an optical qubit requires a narrow-
linewidth laser locked to a high-finesse optical cavity. In our case, this is a Toptica DL-Pro
laser system, locked to a 10 kHz linewidth cavity from Stable Laser Systems (see [51] for
details on this system).

However, the locking process itself generates undesirable features in the frequency spec-
trum of the laser known as servo bumps. These features result from the laser locking electron-
ics. Essentially, the locking electronics contains contains a low-frequency (less than about
1-2 MHz) control loop with high gain for narrowing the laser linewidth. For noise with
low enough frequency, the low frequency control loop operates the laser current and piezo-
electric control element in the correct direction to compensate the noise. However, noise
around the maximum frequency of the control loop is “corrected” with the wrong phase, in
effect amplifying noise. This gives rise to bumps in the laser frequency spectrum, shown in
Fig. 4.2.
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Figure 4.1: Optical layout for the 729 nm laser beams in the laser room. Image made using
ComponentLibrary[20].

The servo bumps, around 750 kHz in our case, are located near the motional frequencies
of our ions. This means that if the laser is used to address the motional sidebands, the servo
bumps will be near the carrier transition, and can cause undesirable spin flips, leading to
decoherence.

To put these numbers in context, since our servo bumps are measured to be about 25 dB
below the main carrier, the power in each bump is roughly 0.3% of the total laser power.
Therefore, if the central peak of the laser will drive carrier Rabi oscillations with frequency
Ω, one of the servo bumps will have a Rabi frequency of

√
0.003Ω ≈ 0.05Ω. For our system,

η ≈ 0.05 for all of the modes, and therefore the rate of excitation due to the servo bumps
can approach the motional sideband Rabi frequency ηΩ if the bump is located directly on
the carrier.

In order to remove these bumps, we use a method suggested by the Ozeri group [2]. We
use the light transmitted through the locking cavity itself as a seed for an injection locked
laser diode (Fig. 4.1). This scheme is effective because the locking cavity has a linewidth of
about 10 kHz, and therefore the servo bumps should be heavily suppressed in the transmitted
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Figure 4.2: Beat signal between laser light from the Toptica DL-PRO, and light transmit-
ted through the locking cavity. The transmitted light is first used to inject a laser diode,
amplifying it to 30 mW. The transmitted light is sent through an 80 MHz AOM, and then
combined on a beamsplitter with the beam from the DL-PRO, and directed on a photodiode.
The output of the photodiode is measured on a spectrum analyzer. A narrow peak is seen
at the center of the scan–this is where most of the laser power is concentrated. About 25 dB
below the main peak, and 750 kHz away, are the broader servo bumps.

light.
Given sufficient seed power, an injection lock can be quite easy to achieve. Essentially,

the process works by injecting a seed laser beam with wavelength λs into the laser diode. If
the free-running wavelength of the diode is close enough to λs, the diode will “lock”, and
begin lasing at λs with the full output power of the diode. In practice, this is accomplished
by combining the seed beam with the output of the laser diode on the rejected port of an
optical isolator. A cylindrical telescope is also used to match the spatial mode of the seed
light to the laser diode. The current and temperature of the laser diode is adjusted to make
its free-running output as close as possible to the desired frequency.

With about 250 µW of incoming power to the locking cavity, we obtain about 30 µW
of transmitted power. At these low seed powers, we found it quite difficult to maintain an
injection lock with high output power (30 mW)–we speculate that for high output powers,
the injection interval– the current interval (Imin, Imax) in which the diode will lock to the
seed–is quite narrow and small changes in the operating temperature or seed power will cause
the diode to fall out of lock. We found it much easier to implement the scheme in two stages:
first, the output of the cavity seeds an “intermediate” diode with about 1 mW of output
power. This lock is found to be quite stable, and typically does not require adjustment
throughout the day.

The output of the “intermediate” diode is then used to seed the slave diode, which
produces an output power of about 30 mW. When seeded with the larger power from the
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intermediate diode, this lock is also maintained throughout the day.
We have found the most reliable way to monitor the status of both the intermediate and

slave injection-locked diodes is to perform a beat measurement. Part of the output of the
intermediate diode is sent through an AOM at 80 MHz. The AOM output is then combined
on a beamsplitter with the output of the slave diode, and the combined beam is measured
on a photodiode. Since the two beams are offset in frequency by 80 MHz, an 80 MHz beat
note is measured on a spectrum analyzer. Any additional frequencies in either beam are
detected as sidebands around this beat frequency, and the spectral purity of this signal is
a good test for whether the injection lock current in either the intermediate or slave diodes
needs adjustment.

4.2 Lasers and imaging

All lasers used in the experiments are operated in a separate room (the Laser Room), from
the room in which the experiment is running. The light is brought to the experimental
optical table by 20 meter optical fibers. This strategy has the strong advantage that the
lasers are considerably more stable than if they were in a more highly trafficked location.

The lasers in use in this experiment are all diode lasers. The 397 nm, 866 nm, and
854 nm lasers are locked to temperature controlled reference cavities. The cavity length can
be controlled by biasing a piezo attached to one of the cavity mirrors, thereby controlling
the laser frequency. The photoionization lasers are free-running. The 729 nm laser is locked
to a high finesse optical cavity (linewidth on the order of 10 kHz) provided by Stable Laser
Systems. The entire system is discussed in more detail in [51].

The photoionization laser light arrives on the optical table from the laser room and are
then overlapped with the 397 nm laser for Doppler cooling before being delivered to the ion
trap over a short fiber.

The Doppler cooling and repump light are amplitude and frequency controlled by double
pass AOMs. These are driven by DDS frequency sources, which are operated by an FPGA
(the “pulser”). This system allows both manual control of the laser frequencies as well as
the operation during a pulse sequence. This system was developed by Thaned Pruttivarasin,
and discussed in his thesis [51].

The imaging setup is shown in Figure 4.3. The ion fluorescence (397 nm) is collected
with an objective lens and focused onto a photomultiplier tube and a CCD camera for ion
state detection.

An elegant feature of this imaging setup is the insertion of a dichroic mirror in the optical
path which transmits blue light and reflects red light. This allows the 729 nm to be addressed
to individual ions by overlapping the laser light with the imaging path.
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Figure 4.3: Sketch of the imaging system. Image made using ComponentLibrary [20].

4.3 Vacuum system and trap

The experimental system discussed in this chapter centers around microfabricated surface-
electrode Paul trap. The trap is mounted in a vacuum chamber1 which is held at the
ultra-high vacuum (UHV) pressure of around 10−11 torr. The vacuum apparatus is sketched
in Figure 4.4.

Low vacuum pressure is achieved via a combination of methods. All components in the
vacuum chamber are meticulously cleaned using isopropanol, acetone, and de-ionized water.
The materials are also carefully chosen to have low outgassing rates. After assembly, the
chamber is first pumped down to a pressure around 10−8 torr via a turbo pump. It is
then baked at 150◦C for about 2 weeks while connected to the turbo pump. This baking
process removes water as well as heavy hydrocarbons such as hand oils from the chamber
and continues until the pressure no longer improves as measured on a residual gas analyzer
(RGA). After baking, a titanium-sublimation pump (TiSub) is fired several times, which
has the effect of absorbing hydrogen in the chamber, which has a low pumping cross section
through the turbo pump. Finally, an ion pump is turned on which brings the vacuum
pressure down to the final value.

1Kimball 8” octagon
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Figure 4.4: Top view diagram of the vacuum chamber plus laser beam paths for the surface
trap apparatus. A titanium sublimation pump is not shown because it would appear below
the ion pump. The 375 and 422 nm laser beams are for photoionizing neutral calcium
produced by the oven. An additional 729 nm beam hitting the trap from the top is also not
shown. DC voltages are applied to the trap via the DSUB.

The trap itself is epoxied to a ceramic leadless chip carrier (CLCC) (Figure 4.6). The rf
and dc electrodes on the trap are wire bonded to bonding pads on the CLCC. The CLCC
is mounted in a ceramic socket machined by Qualmax, with electrical connection between
the bonding pads on the CLCC and the socket. The socket sits on an in-vacuum filterboard
(Figure 4.5), and is electrically connected to the filterboard via Fuzz Buttons, manufactured
by Custom Interconnects.

All electrical connections (rf and dc) from outside the chamber to the trap go through the
in-vacuum filterboard. These connections are made via copper wires running from electrical
feedthroughs to soldering points on the filterboard. The DC lines on the filterboard are
filtered with low-pass filters to reduce electrical noise on the trap electrodes 2.

2AVX X7R 47nF; Part No. W3H15C4738AT1F, with a measured cutoff frequency of 300 kHz
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Figure 4.5: Schematic of the in-vacuum filterboard on which the trap is mounted. The dc
lines are filtered with monolithic low-pass filters with a low-frequency cutoff of 300 kHz. The
socket is mounted on the reverse side of the board, and sits approximately on the orange
dashed square. The dc and rf connections from outside the chamber arrive from copper wires
soldered onto the filterboard. The board is made from alumina to minimize rf losses in the
dielectric. The solder is lead-free and flux-free so as to have favorable outgassing properties
and has the chemical composition Sn 96.5%, Ag 3%, Cu 0.5%.

4.4 DC electronics

This section pertains only to Chapter 5 and Sec. 6.3. However, the system described here is
currently in use in all the surface-trap experiments in the lab.

For controlling the voltages on the dc electrodes for the trap, we use a multi-stage system
sketched in Figure 4.7.

Voltage sets are specified by a computer which communicates via USB to a field-programmable-
gate-array (FPGA)3 called the controller board. The computer writes instructions to the
controller board in the form of

write (BITSTRING) to DAC (number) in voltage set (number)

where BITSTRING is a 16-bit binary string encoding the desired output voltage. The voltages
on the DAC board will be immediately updated if the voltage set-number is zero, but sets
of voltages can also be stored in the DAC board. The DAC board advances through stored
voltage sets on a TTL trigger.

3Opal Kelly XEM3001
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Figure 4.6: Trap-holding CLCC and socket.

Figure 4.7: Schematic overview of the dc electrode control system.
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In order to prevent ground loops, as well as to electrically isolate the trap voltages from
the (electrically noisy) computer, the controller board communicates with the DAC board
over fiber optic cables.

The DAC board functionally consists of three main components: power supplies, DAC
chips4, and FPGAs5 for receiving voltage sets from the controller and writing serial bitstrings
to the DAC chips themselves. The on-board FPGA receives instructions from the controller
board via the fiber-optic connections.

The DAC voltages are amplified with a gain of 4 by low noise operational amplifiers6.
Coupled with the amplifiers, each dc electrode is controllable to ±40 V with 16 bits of
precision.

The trap electrodes are electrically connected outside the vacuum chamber through a
DSUB feedthrough. Immediately before the feedthrough, each DC channel is filtered with a
dual stage RC filter7 to mitigate electrical noise near the ion motional frequencies.

4.5 Radio-frequency electronics

For reasonable experimental parameters, one needs to apply around 100 V of rf amplitude at a
frequency near 30 MHz. The electrical load of the trap and associated circuitry (feedthrough,
CLCC, etc.), is primarily capacitive with approximately 30 pF of capacitance. It is infeasible
to drive this electrical load directly with a 50Ω output due to both reflections as well as the
large power required.

Instead, we use a quarter-wave helical coil resonator to match the impedance between the
driving circuit and the trap (Figure 4.8). This resonator consists of a copper coil mounted
inside a copper tube, with one end of the coil grounded to the tube. The inductance of the
coil, coupled with the self capacitance of the coil, the capacitance of the coil to the tube, and
the parallel capacitance of the trap together form an LC resonator. By tuning the number of
turns in the coil, the resonance frequency of the circuit can be selected. Using this method,
we are able to apply the needed voltage for trapping with less than 1 W of input power.

The rf signal is generated by a Rhode and Schwarz signal generator, and then amplified
by a 5W MiniCircuits rf amplifier.

The resonator is excited inductively through the use of an antenna coil, following [64].
This allows the trap ground to be electrically isolated at low frequencies from the amplifier
and signal generator, preventing ground loops.

The output of the coil may be dc biased over a capacitor (Fig. 4.8). From the perspective
of the ion, this adds a dc potential in addition to the rf pseudopotential. This can be used
to increase trap depth, lift the degeneracy between the ion radial frequencies, as well as

4Analog Devices AD600
5Altera Cyclone II
6Texas Instruments OPA445
7R = 1 kΩ, C = 100 nF, giving a filter cutoff of 1.6 kHz
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Figure 4.8: Resonator plus dc-biasing circuit. The resonator is inductively excited via the
antenna coil (gold), which is connected to the resonator can by a ground-isolated BNC. The
antenna coil is driven by a Rhode and Schwarz rf signal generator. The input impedance
of the resonator is matched to 50Ω by adjusting the position and number of turns of the
antenna. The output of the rf resonator may be dc-biased by applying a dc voltage where
indicated. The dc voltage is low-pass filtered both to suppress noise from the voltage source
as well as to prevent rf currents from flowing into the voltage source, potentially causing dc
voltage instabilities. The resistor and capacitor values are R = 1 kΩ and C = 100 nF giving
a cutoff frequency of 1.5 kHz. The output leads of the resonator are soldered directly to the
rf feedthrough on the vacuum chamber, which connect to the trap rf electrodes and ground
plane.

to rotate the normal mode orientation of the trap into alignment with the rf quadrupole
direction.

4.6 Optical layout for laser-based gates

The most complicated optical setup we use is for the 729 nm laser. This setup is designed to
accommodate several needs. First, it is useful to have two independently controllable beams
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Figure 4.9: Optical layout for the 729 nm laser beams on the experimental table. Image
made using ComponentLibrary [20].

(e.g. for addressing different ions in a chain, or the same ion from different directions).
Secondly, for generating quantum gates such as those described in Sec. 3.6, it is necessary
imprint two frequencies on the laser beam.

In our system, the laser light from laser room is split into two functionally identical paths.
In each path, the frequency, phase, and amplitude of the laser beam is set by a double pass
AOM (near 220 MHz), controlled by the pulser.

After the double pass, the beam goes through a single pass AOM (center frequency
80 MHz). The single pass is operated in a somewhat complicated way. Each single pass AOM
requires three DDS frequency sources which run in a continuous-wave (CW) mode with a
pre-programmed frequency (i.e., programmed before the pulse sequence begins). Two of the
frequency sources are combined on a power splitter, the output of which is a bichromatic
rf signal. The bichromatic signal is combined on a MiniCircuits rf switch with a third
frequency source running at 80 MHz. The rf switch is TTL controllable, which switches the
AOM between monochromatic and bichromatic operation. However, full rf power is always
arriving at the AOM, and therefore in order to turn off the laser beam going to the ion, the
double pass must be switched off.

In order to compensate the ∼ -80 MHz frequency shift due to the single pass AOMs, an
additional AOM is placed in the laser room and driven with a Rhode and Schwarz signal
generator at 80 MHz. This AOM is additionally used to dynamically stabilize the power
arriving at the laser table, and in the future can also be used for fiber noise cancellation.
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Figure 4.10: rf circuit and feedback elements for the 3D trap. The out of phase outputs of
the resonator (in orange box) are measured on capacitive dividers labeled mon1 and mon2.
The difference voltage between mon1 and mon2 is rectified and subtracted from a setpoint,
producing the quasi-DC signal Verr. A PID feeds back to the signal generator modulation
input to stabilize Verr to zero.

4.7 Radio-frequency amplitude stabilizer

For the quantum simulation experiments discussed in Chapter 7, it was necessary to achieve
radial frequency stabilities of better than 500 Hz. As the ion radial frequencies depend
on the rf amplitude arriving at the trap, fluctuations in the rf amplitude result in trap
frequency fluctuations. With a free-running resonator, the trap frequency has long-term
drifts, due in part to temperature changes in the amplifier, and short-term fluctuations due
to a number of effects such as mechanical vibrations of the resonator, or changes in the
resonator’s natural frequency due to people moving around the experimental apparatus.
Without active stabilization, the ion’s radial frequencies move around by several kHz on
both short (seconds to minutes) and long (hours) timescales.

These electronics were developed specifically for the 3D trap, which uses a different kind
of resonator than the one discussed in Sec. 4.5. In this case, the resonator is a half wave
resonator which is excited in the center of the coil. The rf electrodes on the trap are driven
180◦ out of phase. See [51] for details. The system, including feedback electronics, is shown
schematically in Fig. 4.10.

Our approach is to directly measure the rf amplitude via a rectifier, and use a PID
controller to feedback on the input power to the resonator. The rf amplitude is measured
on both outputs of the resonator by a capacitive divider which prevents the measurement
circuit from excessively loading the resonator. The two capacitive divider outputs are labeled
“mon1” and “mon2”. The rectifier (box labeled “rectifier” in Fig. 4.10, developed mainly
by Eli Megidish and Soenke Moller, actually consists of two functional components. First,
the input signal is passively rectified to a DC amplitude with high-frequency diodes. The
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Figure 4.11: Measured radial trap frequency vs. rf detector error signal. Line is a fit
showing a sensitivity of 352 Hz/mV.

rectified signal is then subtracted from a setpoint so that the DC output of the rectifier
circuit is actually an error signal Verr. A PID controller stabilizes Verr to zero by feeding
back to the amplitude modulation of the signal generator. A similar approach was recently
demonstrated by the Monroe group [37].

The sensitivity of the detection circuit is characterized in Fig. 4.11. By disabling the
feedback, we varied the rf generator power around the operating point and measured both
the radial frequency of a trapped ion as well as the error signal Verr produced by the the
rectifier circuit. The measured sensitivity is 352 Hz/mV. At the moment, we aim for long-
term trap frequency stability on the order of 200 Hz, and therefore the error signal must be
stabilized to about 1 mV. Experience suggests that it is probably reasonable to reach error
signal stabilities somewhere in the range of 100 µV–roughly suggesting that this method
can be expected to achieve trap frequency stabilities on the order of 35 Hz out of 2 MHz.
Of course, achieving this level of stability on very long (hours) timescales would be quite
challenging, due to temperature sensitivity of the capacitive divider and rectifier circuits, as
well as long-term drifts of the voltage reference.

The trap frequency stability is measured by a pulsed-excitation experiment, described in
Section 3.6. The trap frequency stability is probed in two ways. The first way is spectro-
scopically (See Fig. 4.12). In such a measurement, the ion is Doppler cooled, and a coherent
displacement is applied to the motion. The coherent displacement arises from a train of
397 nm laser pulses with a repetition rate fex near the trap frequency, producing a modu-
lated radiation pressure force (see Sec. 3.6). After this, a 729 nm laser pulse is applied to
the blue motional sideband, followed by electron shelving readout probing the D-state exci-
tation probability. The duration of the 729 nm laser pulse must be significantly shorter than
1/(ηOmega), so that when the oscillator is not displaced, the D-state excitation probability
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Figure 4.12: Schematic pulse sequence for trap frequency measurement. A pulse train of
397 nm light has a repetition rate near the ion’s motional frequency, effecting a coherent
displacement of the ion’s motion. After the pulse train, a 729 nm pulse is applied to the
blue sideband, followed by electron shelving readout. When the repetition rate is resonant
to the trap frequency, the sideband Rabi frequency increases dramatically, causing a peak in
the D-state population after readout.

is small. When the pulse-train repetition rate is resonant to the motional frequency, however,
the sideband Rabi frequency increases, causing the excitation probability to also increase.
Repeating this measurement for different values of fex shows an excitation peak near the
motional frequency. Repeating this measurement over the course of tens of minutes moni-
tors long timescale changes in the vibrational frequency. The result of such a measurement
is shown in Fig. 4.13.

The second measurement is Ramsey-style probe to measure short-term coherence (See
Fig 4.14). This method is similar to the previous spectroscopic measurement except two
pulse trains are applied, separated by an interrogation time τ . The repetition rate fex is
detuned slightly (about 2 kHz) from the radial trap frequency (2π × 2.1 MHz). As long
as the ion’s phase evolution is phase-coherent over the time τ , the resulting displacement
amplitude will oscillate sinusoidally as the phase between the ion’s motion and the repetition
rate evolves. However, as the phase of the ion’s motion becomes randomized due to trap
frequency fluctuations, the oscillations dephase. The damping time of the oscillatory signal
(Fig. 4.15) measures the phase coherence time of the ion motion. A theoretical treatment of
how trap frequency fluctuations appear in this measurement is given in Sec. 6.1.
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Figure 4.13: Left: D-state excitation probability as a function of the coherent excitation
frequency. It is strongly peaked when the coherent excitation is resonant. In this case, the
radial frequency was about 2π × 2.6 MHz. Right: A compilation of spectral measurements
taken over an hour. We see a slow drift of at most 500 Hz in the ion’s radial frequency over
this period.

397

729

time

τ

Figure 4.14: Ramsey-style probe for motional coherence. Two pulse trains of 397 nm light,
each effecting a coherent motional displacement, are separated by an interrogation time τ .
After the two displacement operations, a 729 nm laser pulse is applied to the blue sideband,
followed by electron shelving state readout.
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Figure 4.15: Short-term coherence probe of the ion’s radial motion. The coherence is
measured by a Ramsey-style coherent displacement measurement (described in the main
text). The x-axis is the Ramsey interrogation time, in ms. The red line is a fit of the
data to a cosine with a decaying exponential, with a decay time constant about 5 ms. This
measurement shows that with the stabilizer running, the phase coherence of the ion’s motion
is preserved on this timescale.



45

Chapter 5

Parametric coupling

5.1 Introduction

This work describes experimental work first published in Ref. [23] and closely follows that
treatment.

A single trapped ion oscillates with three normal vibrational frequencies. Each different
mode of oscillation corresponds to a displacement of the ion along a particular vector that I
will call the mode vector.

In order to do perform many useful operations involving spin-motion coupling–such as
sideband cooling, temperature measurement, or even quantum gates, it is necessary for the
laser to have substantial projection onto the mode vector. In general, the coupling strength
of the laser to the spin-motion transitions is proportional to cos(θ), and θ is the angle between
the laser wave-vector and the mode vector (see Sec. 3.3). The need for the laser wave-vector
to have appreciable projection onto the mode of interest imposes substantial experimental
constraints regarding optical access. For instance, in a surface trap, it may be the case that
a particular mode vector is oriented nearly vertically with respect to the trap surface. To
avoid charging effects [4], it may be desirable to avoid having laser light directly impinge
on the trap surface. In order to avoid this, the laser must propagate nearly parallel to the
trap and one is then limited to a quite small overlap between the wave vector and the mode
vector–making it difficult to interrogate this mode.

This problem may be partially overcome by rotating the normal modes such that the
laser has significant projection onto each mode. However, this itself constrains the design of
the trap electrodes so that the number and shape of the electrodes is sufficient to perform
the desired rotation.

In this Chapter, I describe a parametric coupling scheme which evades these require-
ments. This scheme allows experimental access to any vibrational mode of a single ion
without direct optical interaction. This is done by applying an oscillating voltage to trap
electrodes such that the associated field at the trapping position features a spatial variation
enabling the coupling. Tuning the oscillation frequency resonant to the frequency difference
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between two modes causes the modes to exchange energy. This allows optical interrogation
of an inaccessible mode by first coupling it to another, optically accessible mode. A similar
technique has been demonstrated in Penning traps[72, 12].

5.2 Theory of interaction

Under consideration is an ion with charge q and mass m, confined in a linear surface electrode
rf Paul trap. In such a trap, an oscillating voltage with frequency in the range of 2π×30 MHz
will be applied to two electrodes (labeled “RF” in Fig. 5.1) providing two-dimensional
confinement along the x and y axes with pseudopotential frequencies ωx and ωy. In this case
the rf pseudopotential generates no confinement in a third direction, z. The confinement in
the z direction is the result of a dc potential which is quadratically varying in space, giving
the ion a third motional frequency ωz.

x

z

y

A

BC

RF RF

135 μm

Figure 5.1: Illustration of the surface trap where the ion’s position is represented by the black
dot. When the experiment is operated in the xz coupling configuration, the rf parametric
drive is applied to the electrodes labeled A and B (blue diagonal shading). When operated in
the xy coupling configuration, the drive is applied to the electrode labeled C (red horizontal
shading). Figure first published in [23].

Working in the aforementioned approximation, we consider a harmonically confined ion
with motional frequencies ωi, i ∈ {x, y, z}. The interaction energy created when a voltage
u is applied to a nearby coupling electrode is qphi(r)u. φ(r) is the dimensionless spatial
profile of the potential at the trapping position due to the coupling electrode. To enable the
mode-mode coupling, we modulate the voltage on a set of electrodes whose spatial profile
mixes two of the ion’s normal vibrational modes.
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Then the Hamiltonian governing the motion isH = Hosc+qφ(r)u, withHosc = ~
∑

i ωia
†
iai

being the harmonic oscillator Hamiltonian and ai (a†i ) is the annihilation (creation) operator
for mode i. To achieve mode-mode coupling, we apply an oscillating radio-frequency (rf)
voltage on a judiciously chosen set of coupling electrodes such that u = u0 cos (ωpt). If
ωp = ωi−ωj, the difference frequency between modes i and j, a parametric coupling emerges
in the Hamiltonian.

To see the coupling explicitly, φ(r) is expanded to second order as φ(r) = φ(0) +∑
i(ri/D1,i) + (1/2)

∑
i,j(±)(rirj)/D

2
ij. The D’s are the expansion coefficients The linear

terms create an electric field at the ion position and present a driving force on the ion which
introduces a driven motion analogous to micro-motion. As we will show later, this additional
term does not alter the coupling dynamics and thus can be neglected if the set of coupling
electrodes are chosen such that the coupling dominates over this driving force.

The terms proportional to r2
i modify the motional frequencies of the ion. If the modu-

lation frequency is near the resonance condition ωp ≈ 2ωi, these terms effect a parametric
amplification of the energy in the ωi mode [46]. However, if ωp is far from this condition
(as will be the case in our experiments), the modulation of the trap frequency contributes
only an overall phase to the ion’s spatial wavefunction. Finally, the cross terms proportional
to rirj are responsible for the parametric coupling with the drive frequency chosen to be
ωi − ωj.

In the interaction picture, the Hamiltonian becomes

HI = qu0 cos(ωpt)
∑
i,j

(
rirj
2D2

ij

)

= qu0~ cos(ωpt)
∑
ij

ei(ωi+ωj)ta†ia
†
j + ei(ωi−ωj)ta†iaj + H.c.

4m
√
ωiωjD2

ij

= ~ cos(ωpt)
∑
ij

gij

(
ei(ωi+ωj)ta†ia

†
j + ei(ωi−ωj)ta†iaj + H.c.

)
(5.1)

where H.c. indicates Hermitian conjugation. In the last line we have absorbed all the con-
stants except ~ into the coupling constant gij. In general, we expect the rotating wave
approximation (RWA) to be valid whenever gij � ωi,j.

If ωp = ωi−ωj and applying the RWA, all the terms in the sum of Eq. 5.1 vanish except
the one involving coupling oscillators i and j leading to

HI ≈ ~gij(aia†j + a†iaj) . (5.2)

This is precisely the interaction we have sought to create: it will swap the quantum states
between oscillator modes i and j at a frequency gij. By applying the parametric drive for a
specific duration, we can controllably induce state swapping between any two modes of the
single ion oscillator.

When the parametric drive is operated on resonance, that is, ωp = ωi−ωj, the interaction
picture Hamiltonian is diagonal in the basis of two modified normal modes given by 1√

2
(ai±
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aj). The modes are split in frequency by 2gij. If the drive is detuned by ∆ from the
parametric resonance, the form of the interaction picture Hamiltonian changes. To treat
this problem, it is easiest to transform to a particular interaction picture in which:

HI ≈ ~
∆

2
(a†iai − a†jaj) + ~gij(aia†j + a†iaj) . (5.3)

The eigenvalue splitting of this Hamiltonian is given by 2
√
g2
ij + 4∆2. Thus, optical spec-

troscopy of the ion motion will show the bare resonance at ωi split into two lines as the
parametric drive is operated near resonance. Varying both laser frequency and the paramet-
ric drive detuning will show a familiar avoided crossing behavior, providing a witness of the
parametric interaction.

5.3 Experimental implementation

For the experiments, a single 40Ca+ ion is trapped about 100 µm above the surface of a
micro fabricated surface electrode rf Paul trap, where sideband-cooling and analysis of the
motional state is performed on the metastable 42S1/2 ↔ 32D5/2 transition, as discussed in
Sec. 3.4. The ion has three motional modes, with axes nearly parallel to the Cartesian axes
defined in Fig. 5.1. The motional frequencies along these three axes are about (ωx, ωy, ωz) ≈
2π × (2.6, 2.9, 1.0) MHz. Sideband cooling and state manipulation is accomplished with a
laser in the x−z plane, with about 45◦ projection onto both the x and z axes. The projection
of the wave-vector onto the y axis is 9◦, making the Y motional mode difficult to analyze
directly. Owing to the small coupling strength of the laser onto the Y mode, sideband cooling
close to the ground state can only be performed on the X and Z modes.

Depending on which modes ought to be coupled, the field needs to be applied to a set of
electrodes maximizing the coupling term while keeping the linear terms sufficiently small that
the associated electric fields do not produce excessive heating of any modes. As discussed
later in this Chapter, if the coupling field is applied continuously, the electric fields effect
a coherent driving force on the ion motion. However, if the coupling field is applied for a
finite time, the driving force will have frequency components resonant to the ion’s motion,
thereby directly adding energy to the ion’s motion.

Throughout this Chapter we use two configurations that couple either the X and Y
modes or the X and Z modes. For the first (xy) configuration we simply apply the coupling
voltage to the electrode marked C in Fig 5.1. In the case of the xz configuration, driving
a single electrode is not sufficient as it would result in excessive driving force on the ion.
Therefore, we aim to apply voltages with ratio of 1:4 to electrodes A and B, which constitutes
the optimal configuration when being constrained to driving two electrodes in phase.

Each experiment begins with with Doppler cooling on the 42S1/2 ↔ 42P1/2 transition and
optical pumping into the ms = −1/2 state, followed by a fixed length coherent excitation
pulse and electron shelving state readout (Sec. 3.5). The Doppler cooling stage prepares the
Z mode to a mean occupation of ≈ 20 vibrational quanta, and the X mode to ≈ 6 quanta.
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The spectroscopy is carried out on the |L,mJ〉 = |S,−1/2〉 → |D,−1/2〉 transition. The
state of the motional mode i is probed by evaluating the strength of the sidebands of this
transition detuned by ±ωi, as in Sec. 3.4.

The parametric interaction is studied in two ways. It is first characterized by operating it
in continuous-wave (CW) mode. In this mode, the drive is active throughout the experiments
and the spectroscopic signatures of coupling are observed. It is also operated in pulsed mode
where the coupling field is switched on for a fixed time after the initial state preparation
giving access to the time dynamics of the coupling process.

Characterizing the interaction

The experimentally simplest way to investigate the parametric interaction is to first operate
it in CW mode near the parametric resonance condition. Then, laser spectroscopy near one
of the secular sidebands (indexed by i or j) will show two Lorentzian lineshapes split in

frequency space by 2
√
g2
ij + 4∆2, where ∆ is the detuning of the parametric drive from the

resonance condition.

Figure 5.2: Measured energy spectrum of the X radial sideband illustrating the avoided
crossing as a function of the detuning of the parametric drive. The green rectangles represent
the mean values of Lorentzian fits to determine the frequency splitting. Figure first published
in [23].

By measuring the spectrum around the sideband transition for several drive frequencies
ωp, the precise resonance frequency and the coupling strength can be determined from the
avoided crossing as shown in Fig. 5.2. At parametric resonance, the line splitting features a
minimum, and the coupling strength equals half the on-resonance splitting.
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The coupling strength is limited by the maximum voltage that can be applied to the cou-
pling electrodes which are heavily filtered by in-vacuum low-pass filters to suppress heating
from technical noise sources. Nevertheless, we have been able to achieve coupling frequencies
approaching 2π × 10 kHz for both xz and xy coupling configurations.

The driven motion amplitude may be quantified by operating the parametric drive in
a continuous-wave mode. Then, the oscillating electric field at the ion position results in
driven motion, analogous to the well-known micro-motion [73]. This driven motion causes
the ion to experience a frequency modulated laser field, redistributing the laser power in
frequency space and reducing the laser power at the resonant frequency. This effect gives
rise to sidebands around the laser’s carrier frequency at integer multiples of the driven motion
frequency. For a continuous wave coupling field, the effect is completely analogous to micro-
motion leading to a reduced coupling strength on the resonant optical transition which can
be observed by a decrease in the Rabi frequency Ωc. As in the case of micro-motion, the
optical transition can be driven by detuning the laser by an integer multiple n of the driving
electric field frequency. In that case, the transition strength is given by [6]

Ωc → |Jn(kA)|Ωc (5.4)

for a given oscillation amplitude A along the laser propagation direction ~k and Jn being the
n-th order Bessel function of the first kind. We note that if the laser is not detuned, i.e. is
on resonance with the optical transition, the coupling strength is reduced by J0(kA).

To measure this effect, we apply a continuous drive (off resonant from all the motional
modes and first order parametric resonances) onto the coupling electrodes and measure the
frequency of Rabi oscillations on the |L,mJ〉 = |S,−1/2〉 → |D,−1/2〉 transition. From this,
we can extract the driven motion amplitude as a function of the parametric drive amplitude
from Eq. 5.4. Fig. [5.3]. shows the normalized Rabi frequencies on the carrier and the driven
motion sideband as a function of the coupling strength for the xz coupling configuration
where ωp = 2π× 1.7 MHz. This allows us to determine the ratio of driven motion amplitude
to the coupling strength to be A/gxz = 497(8)nm/(2π × 1kHz).

In the xy configuration, the drive is applied to an electrode directly beneath the ion so
that most of the driven motion is in the direction orthogonal to the laser and therefore does
not significantly affect the optical coupling strength.

Pulsed mode operation of the drive

In the remainder of this work, we will investigate parametric coupling in the pulsed mode. If
the parametric drive is switched on and off rapidly, the micro-motion analogy of Eq. 5.4 no
longer holds, and the unwanted electric field can induce considerable off-resonant excitation
in the oscillator modes, disturbing the coupling dynamics. However, this electric field con-
tribution to the total Hamiltonian has no notable influence on the coupling dynamics if it is
switched on and off slowly enough, i.e. it is adiabatic. Here, the criterion for adiabaticity is
to avoid off-resonant excitation of the oscillator mode itself. Experimentally, we shape the
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Figure 5.3: Relative Rabi frequency frequency on the carrier (blue squares) and driven motion
sideband (red diamonds), compared to the unperturbed Rabi frequency on the unperturbed
carrier, as a function of parametric coupling strength in the xz coupling configuration. The
solid lines represent fitted Bessel functions of the first kind. The inset illustrates the para-
metric coupling strength gxz as a function of drive voltage amplitude prior to the in-vacuum
low pass filters. Figure first published in [23].

coupling field strength with a Blackman windowing function, which has proven to effectively
reduce off-resonant excitation in a two-level system [25, 55]. More precisely, the window for
a pulse with duration T is described by

BT (t) =
1− α

2
− 1

2
cos

(
2π

t

T

)
+
α

2
cos

(
4π

t

T

)
where α = 0.16. In order to facilitate the comparison to rectangular pulses, the coupling
duration of a Blackman shaped pulse BT is defined as the duration of a rectangular pulse
Trect with the same pulse area so that T = Trect/0.42. Experimentally, using these pulses
for the xz configuration reduces the off-resonant excitation to less than 0.3 quanta for a
reasonable coupling strength of several kHz.

5.4 Population swapping

The first analysis in pulsed mode is to demonstrate that population can be exchanged be-
tween two motional modes. This will serve as an experimental definition of the exchange
operation (SWAP), and form the cornerstone for the cooling and analysis techniques pre-
sented later. To facilitate optical analysis of both involved motional modes, we focus here
on population swapping in the xz configuration, but note that one can construct a SWAP
operation between any two modes and show as an example swapping in the xy configuration.

To demonstrate population swapping, a single mode was sideband cooled close to its
ground state. For the xz configuration, the Z-mode was cooled, and for the xy configuration,
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Figure 5.4: (a) Time evolution of the coupling dynamics illustrated by the excitation of the
red sideband of the Z (blue circles) and X (red rectangles) mode. Initially, the Z mode is
cooled close to its ground state at a mean phonon number of n̄z ≈ 0.2 while the X mode is
left at the Doppler temperature of n̄x ≈ 6 quanta. After a coupling time of around 90 µs,
the population of the two modes is swapped and thus the X mode is close to its ground
state. Solid lines correspond to a numerical solution of the model with no free parameters.
Note that the coupling time does not start at zero, because the Blackman shaped pulse
is not adiabatic in this regime. (b) Red sideband excitation of the X (blue) and Y (red)
modes. The X mode is initially cooled to a mean phonon number of n̄x ≈ 0.3. The out of
phase oscillations between the X and Y red sideband excitations show population oscillating
between the two modes. Figures first published in [23]

the X mode was cooled, followed by a mode coupling pulse, applied for a variable time. The
motional state after the coupling was probed on the red sideband of either mode on the
|S,−1/2〉 → |D,−1/2〉 transition. As the mean phonon number in a given mode drops
significantly below one, the excitation probability is suppressed[73, 43]. The dynamics of the
coupled systems are illustrated in Fig. 5.4 where the periodic oscillations of the excitation
probability represent a hallmark feature of the coupling. It furthermore allows us to define a
SWAP operation where the state of the two modes are completely exchanged at around 90 µs
for xz coupling, and 50 µs for xy coupling. For the xz coupling configuration, a Blackman
shaped pulse needs to be used whereas for the xy configuration a square pulse is sufficient
to suppress off-resonant excitation.
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5.5 Cooling without direct optical access

Application: Ground-state cooling

One useful application of this technique is cooling one of the ion’s vibrational modes without
directly accessing the mode via a laser. The basic principle involves performing laser cooling
on a single, laser-accessible mode (the primary mode), followed by population swapping to
transfer energy from a secondary, non-cooled mode, into the primary mode. One implemen-
tation of this technique is to perform several cooling cycles on the primary mode, and to
insert a SWAP operation between each cycle. With the parametric interaction operated in
this way, the primary mode provides a cold reservoir for the secondary mode. After each
cycle of sideband cooling, the populations of the primary and secondary modes are swapped,
eventually resulting in a state where both the primary and secondary modes are prepared
close to their ground state. We call this method of cooling interleaved cooling, allowing us
to prepare both modes close to their ground states. Interleaved cooling is particularly ele-
gant for ground state preparation because it is insensitive to errors in the SWAP operation.
Even a somewhat imperfect SWAP operation will transfer a large fraction of the population
between the two modes mode, where the population in the primary mode is then removed
by optical cooling. Repetition of this process several times leads to significant reduction in
the secondary mode population.

Interleaved cooling can prepare both modes close to their ground states when the total
heating processes on both modes are slower than the cooling rate on the primary mode.
However, even if this condition is not satisfied, it is still possible to prepare the secondary
mode close to its ground state. Here, we take advantage of the SWAP operations that can
be performed much faster than the typical cooling processes on optical transitions, as one is
not limited by the relatively weak coupling of the light to the ion’s motion. Therefore, one
can cool the primary mode and perform a single SWAP operation subsequently, resulting in
a cool secondary but a hot primary mode. This method is applicable as long as the SWAP
operation can be performed faster than any heating process on the secondary mode.

We have tested both of these cooling techniques, using the Z-mode as the primary and
the X mode as the secondary mode. In the case of interleaved cooling, we performed eight
cycles of sideband cooling with a SWAP operation between each, whereas for the single
SWAP cooling, the Z-mode was cooled for 8 ms followed by a single SWAP. We tabulate
the results detailed in Table 5.5, showing that both simultaneous ground state cooling by
interleaved cooling, as well as single swap cooling are effective techniques for cooling.

Application: Heating rate of an inaccessible mode

A second way to use the parametric interaction is to probe the thermal occupation of an
optically inaccessible mode. As a demonstration, we measure the heating rate in a mode
nearly orthogonal to the laser propagation direction.
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Method n̄z n̄x
Interleaved 0.13(2) 0.31(5)
Single SWAP 7(5) .7(2)

Table 5.1: Cooling results for both interleaved and single SWAP cooling methods. The
interleaved method is capable of preparing two motional modes of the ion close to the ground
state, provided that the heating rate in both modes is sufficiently low (see text). That the
single SWAP method is somewhat less effective than the interleaved method for ground state
preparation reflects the method’s higher sensitivity to errors in the parametric resonance
frequency and mode swapping time as compared to the interleaved scheme.

The heating rate on a single mode can be accurately determined by a process of cooling
the mode to an average excitation much smaller than one vibrational quantum, and then
probing the red and blue sideband excitation as a function of a variable waiting time after
cooling[43]. However, this process relies on the ability to prepare the motional state to small
mean phonon numbers, as well as optical access to the secular sidebands to read out the
mode occupation.

In our experiment, the Y -mode lies nearly perpendicular to the plane of the trap, such
that the projection of the laser onto this mode is about 9◦–too small to use sideband cooling
directly on the mode. Thus, in order to prepare the mode to small thermal occupation, we
performed sideband cooling on the X-mode and then a single SWAP operation to initialize
the Y -mode to a mean thermal occupation of less than a single quantum. To determine the
heating rate, we analyze the mode temperature as discussed above after a variable waiting
time.

As the laser is not completely orthogonal to the Y -mode, the mode temperature can be
analyzed directly on the secular sidebands corresponding to the Y secular sideband. However,
this requires comparably long (exceeding 500 µs) optical excitation times, during which
instabilities in the mode frequency cause systematic errors. Furthermore, the excitation time
is not short compared to the heating processes, adding another systematic error. Therefore,
a much cleaner approach is to again apply a SWAP operation between the X and Y modes
to exchange their population.

In order to verify that the second SWAP operation works as expected, we performed a
heating rate experiment using both of the above techniques, with the heating time varied
between 0 and 2 ms. The results of these experiments are shown in Fig. 5.5. The measure-
ment using the direct analysis of the sideband infers a heating rate of 650(270) quanta/s
whereas the measurement employing two SWAP operations yields 810(80) quanta/s. The
smaller uncertainty from temperature of the Y mode via the X mode reflects the fact that
the Rabi frequency on the X red sideband is considerably faster than that of the Y mode.
This renders the temperature measurement much less sensitive to instabilities in the radial
motional frequencies due to the reduced Fourier bandwidth of the applied pulses.
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Figure 5.5: Mean phonon number as a function of heating time on the Y mode. The Y mode
is prepared close to its ground state by cooling the X mode and swapping the motional states.
Analysis of the motional state is either performed directly on the Y mode (blue squares) or
by a second coupling operation and subsequent analysis on the X mode (red diamonds). The
red line corresponds to a heating rate of 810(80) quanta/s, while the blue line corresponds
to a heating rate of 650(270) quanta/s. Figure first published in [23]
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Chapter 6

Surface noise studies

In quantum information processing, the shared motional degrees of freedom in an ion crystal
are often used as a bus to facilitate entangling operations between ions. However, decoherence
of the ion motion, induced by noisy electric fields at the ion position, limits the fidelity of
entangling operations.

These noisy electric fields can result from various sources, separated broadly into “techni-
cal noise” and “surface noise”. Technical noise, arguably the most prevalent type of electrical
noise in ion traps refers to noise generated by electronic sources. For instance, the voltage
sources used to apply DC voltages to the trap electrodes have some amount of intrinsic noise.
In principle, technical noise can be reduced, for instance by better filtering.

Another noise source is Johnson noise, which is believed to be a fundamental limit to the
motional coherence of ion crystals. Johnson noise can result from both the finite resistance
of the trap electrodes, as well as any resistance in the filter networks attached to the trap
electrodes. Johnson noise arising from the filtering electronics can be reduced by modifying
the filter network, for this reason I consider this kind of Johnson noise to be a technical
noise source. However, Johnson noise due to the finite resistance of the trap electrodes is an
unavoidable and intrinsic property of surface electrode ion traps.

Surface noise, on the other hand, is believed to originate from properties of metallic
surfaces near the trapped ion. It has been experimentally shown that treatment of an ion-
trap surface by Ar+-ion bombardment reduces the noise by up to two orders of magnitude
[28, 13], strongly implicating the trap surface itself as a prominent noise source. However, the
physical mechanism is unknown, and various theoretical models have been proposed in the
literature, suggesting fluctuating dipole sources [60, 59], patch potentials [17, 45], or surface
diffusion of adatoms [22, 73, 28]. This noise was unexpected in surface-trap experiments and
is often known in the literature as “anomalous heating.”

All of these noise sources present fundamental challenges to the miniaturization of ion
trap technology. If surface-electrode ion traps are to be made smaller, the ions must be
trapped closer to the trap electrodes, becoming therefore more sensitive to electrical noise.

On the other hand, trapping an ion near metallic surfaces allows the ion to be used as a
noise sensor, perhaps leading to clues about the origin and dynamics of surface noise effects.
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In this chapter, I discuss two experiments which studied surface noise effects. In the first,
we studied the directional dependence of surface noise and demonstrated an experimental
method for distinguishing surface noise from technical noise. In the second experiment,
we were able to put a bound on the power spectral density of surface noise at very low
frequencies (sub-100 Hz).

6.1 Effects of electrical noise

Before proceeding with a discussion of noise measurements, it is important to establish the
mechanisms through which any kind of electric field noise affects trapped ions.

The first order effect of noise is typically heating. Heating is the process by which the
ion’s motion acquires energy due to ambient electric field fluctuations. This process requires
the fluctuations to have frequency components near one of the ion’s natural vibrational
frequencies.

The second order effect is dephasing. Dephasing describes the loss of phase coherence of
the motional state, and in general does not require the oscillator to acquire energy. Small
random fluctuations of the ion’s motional frequency will eventually randomize the phase of
the motion. I discuss each of these in turn.

Heating

The standard treatment of heating due to electrical noise is given by Turchette, et. al [69].
I summarize their derivation here, with a slight generalization.

In general, a charge harmonically confined in three dimensions will oscillate in three
normal modes with frequencies ωk. Each normal mode of oscillation features excursions
along a particular axis êk. The mode vectors êk are subject to the orthogonality condition
êi
T · êj = δij. The heating rate (defined as d

〈
a†a
〉
/dt) is the rate at which the oscillator

mode acquires energy from the ambient noise processes. We will find the quite reasonable
result that heating rate into the ωk mode will depend on the power spectrum of electric field
fluctuations along the êk axis.

To prove this, it suffices to look at each mode individually. One begins with the assump-
tion that the ion’s motion is governed by the following Hamiltonian:

H = H0 − qEk(t)xk (6.1)

where H0 is the unperturbed harmonic oscillator Hamiltonian with characteristic frequency
ωk and q is the charge of the ion. xk is the displacement of the ion along the êk axis, and
Ek(t) is a random classical electric field amplitude along the êk direction.

Assuming that the ion is initially prepared in the ground state, the rate of population flow
into the first excited state (and therefore the heating rate) is given by first-order perturbation
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theory as:

Γk =
1

~2

∫
dτeiωkτ 〈Ek(t)Ek(t+ τ)〉|〈0|qxk|1〉2 (6.2)

=
q2π

m~ωk
SEk(ωk). (6.3)

Here, SEk(ω) = 1
2π

∫∞
−∞ e

iωt〈Ek(t)Ek(0)〉 is the power spectral density of electric field fluc-
tuations. The form for heating rate differs by some constant factors from that given by
Ref. [69]. This is due to a difference in the definition of power spectral density so as to make
the notation of this chapter internally consistent. This expression tells us that the heating
rate will be directly proportional to the noise power at the ion’s motional frequencies.

It will be convenient for later purposes to generalize Eq. 6.3 into a more vectorial form.
This is rather straightforward:

Γk =
q2π

m~ωk
~SE(ωk) · êk. (6.4)

Here, ( ~SE)k = SEk defined above.

Pure dephasing

Dephasing, in contrast to heating, involves the loss of phase information in the ion’s motion.
In this section, I adapt a treatment from de Sousa [66], in which the response of qubits to
magnetic field noise is treated. I follow a semiclassical approach here, and suppose that the
ion motion is governed by the following stochastic Hamiltonian:

H = ~ωma†a+ ~η(t)a†a. (6.5)

As in the previous subsection, ωm is unperturbed vibrational frequency of the ion. η(t) is a
zero-mean, stationary stochastic process. The effect of η is to dephase the oscillatory motion,
and can be physically thought of as a small, randomly time-varying curvature added to the
ion’s trapping potential. The time evolution operator associated with Eq. 6.5 is:

Uη(t) = e−ia
†a(ωmt+Xη(t)), (6.6)

where Xη(t) =
∫ t

0
η(t′)dt′ represents the total integrated phase acquired by the oscillator

due to the noise term. Since the specific noise trajectory η is unknown, the final quantum
state of the oscillator is represented by a density operator ρ representing an average over all
possible trajectories.

In order to detect these frequency fluctuations, we will consider an experiment first dis-
cussed in Sec. 4.7. In this measurement, one vibrational mode of the ion is first coherently
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Figure 6.1: Ramsey-style probe for motional coherence. Two pulse trains of 397 nm light,
each effecting a coherent motional displacement, are separated by an interrogation time τ .
After the two displacement operations, a 729 nm laser pulse is applied to the blue sideband,
followed by electron shelving state readout. Reproduced from Sec. 4.7 for convenience.

displaced by an amplitude α. This action is represented quantum-mechanically by the dis-
placement operator [21]:

D(α) = eαa
†−α∗a, (6.7)

where a (a†) is the harmonic oscillator annihilation (creation) operator. After a waiting time
τ , another displacement operation is performed, attempting to “undo” the first displacement–
a procedure very similar to a Ramsey experiment. After the second displacement, the amount
of excitation left in the oscillator is probed. If the phase information in the ion’s motion would
be perfectly preserved, the final displacement amplitude would add coherently to the initial
displacement. However, as the phase information is lost, the initial and final displacements
partially interfere destructively, resulting in a smaller final displacement amplitude. If α is
sufficiently large, the procedure is insensitive to heating processes since the addition of a few
vibrational quanta will hardly alter the phase of a large coherent state. The experiment is
shown schematically in Fig. 6.1.

The experiment can be modeled by taking the initial quantum state of the mode to be
ρ0 = |α〉〈α|, where |α〉 = D(α)|0〉, The ion then evolves under the time evolution in Eq. 6.6.
Finally, a coherent displacement operation D(α) is applied, and the resulting amplitude is
measured. This means we have to evaluate the following quantity:〈

a†a
〉

=
∑
η

pηTr
(
a†aD†(α)Uη|α〉〈α|U †ηD(α)

)
(6.8)

=
∑
η

pηTr
(
U †ηD(α)a†aD†(α)Uη|α〉〈α|

)
(6.9)

=
∑
η

pηTr
(
(1 + α2)|α〉〈α|+ αU †η(a+ a†)Uη|α〉〈α|

)
. (6.10)

In the above, the sum is taken over all possible noise trajectories η, and pη is the prob-
ability to take the trajectory. Between the second and third lines, I applied the identity
D(α)a†aD†(α) = (a† + α)(a+ α)[21], taking α to be real.
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Our goal is to use the time-dependence of
〈
a†a
〉

(τ) to learn about fluctuations in the
resonant frequency of the ion. The first term in Eq. 6.10 is just some constants and so will
not contain any time dynamics. If there is any time-dependence to be found, it will occur
in the second term. We will ignore the first term and just concentrate on evaluating the
second term. We only show explicitly one piece of the second term, as the other part works
out analogously. ∑

η

pηTr
(
U †ηaUη

)
|α〉〈α| =

∑
η

pηTr
(
ei(ωmt+Xη(t))a†|α〉〈α|

)
(6.11)

=eiωmt
∑
η

pηe
iXη(t)Tr

(
a†|α〉〈α|

)
(6.12)

=eiωmt
〈
eiXη(t)

〉
Tr
(
a†|α〉〈α|

)
. (6.13)

The result is that the final measurement will be damped by the factor
〈
eiXη(t)

〉
. If the

noise process η takes Gaussian-distributed amplitudes, Ref. [66] evaluates Eq. 6.13 to

〈
eiXη(t)

〉
= exp

(
−
∫ ∞

0

Sη(ω)
sin2(ωt/2)

(ω/2)2
dω

)
, (6.14)

with

Sη =
1

2π

∫ ∞
−∞

eiωt 〈η(t)η(0)〉 dt. (6.15)

Here, Sη is the power spectrum of for the random variable η.
It is worth pausing a moment to reflect on this result. We have described a simple

experiment to probe phase coherence in a mechanical oscillator. Furthermore, in Eq. 6.14
we have related the measurement result to the power spectrum of the noise. In Sec. 6.4, we
will use the results of this experiment to study the frequency dynamics of surface noise.

6.2 A simple model of surface noise

A simple model of surface noise effects in planar surface traps may be obtained by considering
the surface noise source as a charge trapped to the surface. In the limit where the charge
is trapped much closer to the surface than the ion-electrode distance, the charge, combined
with its image charge below the metallic surface may be treated as a dipole. The same
argument should extend to other “small” noise sources, e.g. fluctuating patch potentials,
as long as the ion-electrode distance is large as compared to some characteristic size of the
noise source.

Our model relies on two fundamental assumptions: first, that the dipole is oriented
normally to the trap surface. This is true in the limit that the trap electrodes are made
from a perfect conductor. A second assumption is that the noise sources are uncorrelated.
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A third, relatively weak, assumption is that the trap surface may be treated as an infinite
plane.

Take the ion to be trapped at (x, y, z) = (0, d, 0). A dipole (magnitude p) located at
some point on the surface will produce the electric potential

Φ =
py

4πε0((x− xd)2 + y2 + (z − zd)2)3/2
(6.16)

at the trapping position. Φ is expanded to second order around the trapping position as:

Φ ≈ p

4πε0

(
3dxd
r5

0

x+
−2d2 + x2

d + z2
d

r5
0

(y − d)

+
3d(d2 − 4x2

d + z2
d)

2r7
0

x2 +
3d(2d2 − 3(x2

d + z2
d))

2r7
0

(y − d)2

+
3xd(−4d2 + x2

d + z2
d)

r7
0

x(y − d)

)
(6.17)

where r0 =
√
d2 + x2

d + z2
d is the ion-dipole distance. To save space, the z2, xz and yz terms

are omitted as they are the same as the analogous terms above due to x− z symmetry.
For later convenience, I will name the various coefficients in the previous equation:

Φ ≈ Exx+ Eyy + Ezz +Qxxx
2 +Qyy(y − d)2 +Qxyx(y − d) + . . . (6.18)

The terms linear in space are the electric field components, giving rise to heating pro-
cesses. The terms quadratic in space modify the curvature of the potential seen by the ion,
perturbing the vibrational frequency of the ion.

Electric field fluctuations

The heating rate into a mode is given by the power spectral density of the total electric
field fluctuations. The easiest way to get this is to calculate the autocorrelation of the total
electric field, given as a sum over dipoles.

We only need to calculate each dipole’s autocorrelation as we assume each dipole is
uncorrelated with any other dipoles. In the directions parallel to the plane of the trap (x
and z):

〈Ex(t)Ex(0)〉 =

∫ (
3dxd

4πε0r5
0

)2

〈p(t)p(0)〉 dxddzd (6.19)

=
3

128d4πε20
〈p(t)p(0)〉 (6.20)

= 〈Ez(t)Ez(0)〉 . (6.21)

Here 〈p(t)p(0)〉 is the autocorrelation of the dipole moment magnitude for a single dipole.
We expect no spatial dependence in this function so it is not included in the spatial integral.
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Likewise, we can calculate this integral for the vertical direction:

〈Ey(t)Ey(0)〉 =

∫ (−2d2 + x2
d + z2

d

4πε0r5
0

)2

〈p(t)p(0)〉 dxddzd (6.22)

=
3

64d4πε20
〈p(t)p(0)〉 (6.23)

Putting each of these components into a vector gives:

~SE =
3

128πε20d
4
〈p(t)p(0)〉

1
2
1

 (6.24)

It is important to note that this model is purely geometric, and does not make predictions
about the frequency dependence. The model does however make several specific predictions:
first that the heating rate due to surface effects should scale as d−4 with d being the ion-
electrode distance. This distance scaling is suspected from simple models, but not directly
confirmed in a planar trap geometry. This also predicts a slight polarization in the electric
field fluctuations: the noise normal to the trap (y-direction) should be twice as large as the
fluctuations parallel to the trap. We investigate this polarization experimentally in Sec. 6.3
and Ref. [62].

Quadrupolar fluctuations

Extending the analysis to the second order, we can also make some predictions about “pure
dephasing” processes. Quadrupolar fluctuations, or quadratic variations of the potential
around the ion position, do not contribute to heating because the electric field due to these
terms is zero at the trapping location. These second order potentials do, however, change
the curvature of the trapping potential experienced by the ion. A fluctuating curvature
will perturb the ion’s oscillation frequency and thus give rise to phase randomization, or
dephasing, of the motion over some time.

The dipole model predicts a simple relationship between the power spectrum of quadrupo-
lar potential fluctuations and the power spectrum of electric field fluctuations. The autocor-
relation integral works the same way as the electric field in the previous section.

SQxx ≡ 〈Qxx(t)Qxx(0)〉 =

∫ (
3d(d2 − 4x2

d + z2
d)

4πε02r7
0

)2

〈p(t)p(0)〉 dxddzd (6.25)

=
45

512πε20d
6
〈p(t)p(0)〉 . (6.26)

Qxx is defined in Eq. 6.18. Therefore the model predicts SQxx = 15
4d2
SEx . One interesting

result of this is that the quadrupolar fluctuations should scale as d−6. This will impose a
limit to the miniaturization of ion traps for quantum information processing experiments. In
Ref. [67] and Sec. 6.4, we use the relationship between SE and SQ to make inferences about
the dynamics of surface noise properties.
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6.3 Experiment: Electric field noise polarization

This Section describes work first published in [62].
Heating effects in trapped ions are due to the sum of all noise sources, whether the origin

is technical in nature or due to material properties of the trap surface. However, technical
noise tends to be polarized in a different orientation than surface noise. This provides an
experimental method to determine if electric field noise in a surface trap experiment is due
to technical sources. For experiments in which a trapped ion is used to study surface noise
specifically, ruling out technical noise is an important step. Even in experiments which do
not aim to study surface effects, it is useful to know if noise can be reduced by improving
electronics.

In this work, we varied the orientation the vibrational modes of a single ion (see Fig. 6.2)

to measure different components of the vector quantity ~SE, the power spectrum of electric
field fluctuations. In Sec. 6.2, we showed that for a simple phenomenological noise model
involving dipole sources on a metallic surface that the magnitude of electric field fluctuations
oriented normally to the surface are twice as large as fluctuations parallel to the plane of the
surface.

In fact, this prediction appears in other popular noise models as well. One such model
to describe surface noise is fluctuating patch potentials [17]. It is shown that in the limit of
small patches [45] that the maximum degree of field noise polarization is also two. In [62],
we marginally extend Ref. [17] to show that the polarization R = 2 independent of the patch

size. We quantify the polarization as R = ~SE · ŷ/ ~SE · x̂ where ŷ is a unit vector normal to
the trap plane and x̂ is a unit vector parallel to the trap plane.

Technical noise, by contrast, exhibits a polarization given by the electrode geometry.
This is because technical sources by nature cause the voltage on the entire electrode to vary.
For each electrode, the direction of the field produced at the ion position is given entirely by
the geometry, establishing the polarization.

The exact polarization expected from technical sources depends on how the noise is
modeled. For our work, we consider two different, yet reasonable, noise models: (i) a voltage
independent model where the magnitude of the noise on all electrodes is equal and (ii) a
voltage dependent model where the noise magnitude is proportional to the applied voltage.
Model (i) describes Johnson noise originating from the filter electronics, and model (ii) could
represent, for instance, references of the individual digital to analog converters. For both
models, we assume that the noise on different electrodes is uncorrelated, i.e. there are no
fixed phase relation between the corresponding voltages.

The contribution of each electrode to the heating of the ion motion can be determined
by evaluating the electric field that a voltage on the electrode generates at the ion position.
Since the noise is assumed to be uncorrelated between electrodes and the wavelength is much
larger than the ion-surface distance, the total noise at the ion position is proportional to the
sum of the squares of the electric fields of all electrodes, projected on the respective normal
mode direction. For planar trap geometries as shown in Fig. 6.2, the contribution from the
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Figure 6.2: Schematic drawing of the asymmetric surface trap used in the experiments. The
orientation of the 729 nm laser beams is shown. These beams are oriented so that both
radial modes can be sideband cooled close to the motional ground state to enable heating
rate measurements. The orientation of the radial modes is shown in the bottom figure. The
mode vectors for these modes are rotated by a variable angle φ with respect to the trap
geometry. The expected trapping height is 107 µm above the surface. This figure is slightly
modified from one appearing in Ref. [62]

center electrode, directly below the ion, dominates over all other electrodes. This effect can
be exploited to distinguish technical noise from surface noise in a planar ion trap.

This effect is especially striking for the voltage independent noise model (i) in an asym-
metric trap where the two RF rails have considerably different widths as sketched in Fig. 6.2.
This geometry leads to a trapping position which is not centered on the central electrode.
Thus, the electric field originating from the central electrode at the trapping position does
not point perpendicular to the trap surface but rather at an angle φg. Since the noise is
dominated by the central electrode, the noise is maximal if the mode axis is approximately
aligned with φg. The noise contribution of the central electrode is about a factor of 60 larger
than that of the electrode with the second largest contribution. For the voltage dependent
noise model (ii) the angle of the maximum noise depends on the applied static voltages and
needs to be analyzed for each particular set of voltages.

The noise polarization can be determined independently of the absolute noise magnitude
by evaluating the ratio of the heating rates in two normal modes. The black solid line
in Fig. 6.3 shows the expected ratio of the heating rate of the two radial modes for the
voltage independent noise model, leading to a maximum ratio of Rindep ≈ 30.1, which can
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Figure 6.3: Ratio of the predicted heating rates in the two radial modes for various noise
models as a function of the radial mode rotation angle φ. The green dashed line corresponds
to surface noise, the black solid line corresponds to the voltage independent noise model and
the red dash-dotted line corresponds to the voltage dependent model.

be observed at an angle of φindep ≈ 17◦. For the voltage dependent noise level and the set of
voltages used in our setup, the maximum ratio is Rdep ≈ 5.7 for an angle φdep ≈ 50◦.

Measurements

The polarization of the noise in an ion trap can be estimated by measuring the heating rates
of the normal modes while rotating the mode orientation with respect to the trap surface by
an angle φ (see Fig. 6.2). Since the noise is also frequency dependent, it is is important to
perform all measurements at approximately the same mode frequency. Thus, it is beneficial
to use the two radial modes, as their frequencies are similar whereas the axial trap frequency
is usually considerably smaller. We denote the two normal radial modes l and ↔, where
the mode ↔ shows an angle φ with respect to the trap surface, and the two modes are
perpendicular to each other. The heating rates for those two modes are given by

Sl = Smax cos(φ− φmax)2 + Smin sin(φ− φmax)2 (6.27)

S↔ = Smax sin(φ− φmax)2 + Smin cos(φ− φmax)2 , (6.28)

where Smax,min is the maximum (minimum) noise amplitude and φmax is the angle where the
maximum noise can be observed.

For this method it is required to rotate the radial trap modes without affecting the mode
frequency considerably. This can be achieved by altering the static confinement. The voltages
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on the trap electrodes are controlled by digital-to-analog converters (DACs) (See Sec. 4.4),
and so the confining potential may be modified by adjusting the electrode voltages. We
adjust the voltages on the trap electrodes following the procedure described in Sec. 2.2. For
these measurements, we generate potentials which are linear combinations of the multipole
fields U1 = x2 − y2, U2 = z2 − x2 − y2, and U3 = x · y. The terms U1,3 allow control over
the orientation of the radial trap axes. The multipoles U1 and U3 generate potentials with
axes parallel to the trap surface or at 45◦, respectively. We apply a set of voltages which
generate the potential C1U1 + C3U3. By choosing the coefficients appropriately, the radial
modes may be rotated by an arbitrary angle φ:

C1 = C cos(2φ) (6.29)

C3 = C sin(2φ) (6.30)

where C is the overall potential magnitude which has to be large enough to overcome
symmetry breaking due to stray fields. The resulting potential including the confinement in
the axial direction is then:

U = C2(x2 + y2 − 2z2) + C1(x2 − y2) + C3(x · y) + URF

with C2 determining the strength of the axial confinement. The RF potential URF and U2

have rotational symmetry around z and thus do not affect the mode orientation.
In our surface trap, we are also able to rotate the radial trap axes by applying a static

negative bias voltage onto the RF drive. This orients the trap axis of the higher frequency
mode (l) to φg, which corresponds to the orientation where one of the normal modes is
aligned with the field from the central electrode and hence close to the orientation of the
maximum noise for voltage independent noise.

Experimentally, changing the trap axis by applying a static bias voltage onto the RF
electrode is more reliable than controlling the multipoles of the trap potential, as no precise
simulation of the trap potential is required and miscalibration of the voltage source does not
change the axes orientation

In order to estimate the ratio R, the heating rates of both radial modes need to be
measured. First, the radial mode of interest is sideband cooled (See Sec. 3.4) close to
the ground state by whichever 729 nm beam has the stronger projection. After this state
preparation, a variable waiting time τheat is applied, during which the mode heats up at
some rate. After the waiting time, the thermal occupation n is measured spectroscopically
following Sec. 3.4. Fitting n vs. τheat gives the heating rate.

We measured the heating rates in both modes while keeping the trap frequencies constant
at 2.6±0.1 MHz. Figure 6.4 shows the heating rate as a function of the normal mode angle.
For all but the angle φg the axes are rotated by controlling the static multipole confinement
of all electrodes. For measuring at trap orientation with angle φg, a static bias voltage is
applied to the rf electrodes.

Applying this bias voltage on the rf electrodes allows for the most reliable trap rotation
and thus we will only use this method for quantitative analysis of the noise polarization.
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Figure 6.4: Measured ratio of the heating rate in the two radial modes as a function of
rotation angle φ. Red and blue diamonds are measurements without additional noise taken
on different days. Black crosses are measurements with additional noise on the central
electrode. The green dashed line corresponds to surface noise whereas the black solid line
corresponds to the technical noise model. This image is published in Ref. [62]

It is by coincidence that in our trap geometry, biasing the rf electrodes rotates the normal
mode orientation to φg. For geometries in which this is not the case, care must be taken to
ensure that the desired normal mode orientation is achieved. This can involve ensuring the
individual DACs are well calibrated, or directly measuring the Lamb-Dicke parameter with
a known laser orientation (see Sec. 3.3). We find a ratio of heating rates in the two modes of
R = 4.2(5) which is small compared to the ratio predicted by the voltage independent noise
model of R ≈ 30.1. From this we can exclude the voltage independent technical noise model
as the dominant noise source in our setup.

In order to exclude the voltage dependent noise model, we measure the heating rate for
the l mode for two different sets of voltages providing an axial confinement of approximately
1 MHz (for set i) and 707 kHz (for set ii) while keeping the radial trap frequencies constant.
The voltages of the sets differ by a factor of two and assuming the voltage noise to be
proportional to the voltage, one would expect the heating rates to differ by a factor of four
as the heating rate scales with the power spectral density of the noise. We measure a heating
rate of ṅ = 0.69(6) quanta/ms for set i and ṅ = 0.52(3) quanta/ms for set ii, yielding a factor
of 1.3(1) between the two heating rates. With this result we can exclude being dominated by
noise that scales linearly with the applied voltage, as the model predicts a change in heating
rate of a factor of four. A weaker scaling cannot be excluded completely but inferring a
scaling factor would give no meaningful results due to large statistical uncertainties.
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We further test the method by adding voltage noise to only the central electrode with a
white noise generator. This should lead to an increase of the heating rate in the mode parallel
to the maximum noise direction, whereas the perpendicular mode should not be affected. The
experiments demonstrate this effect: The heating rate in the perpendicular mode without
adding noise is ṅ↔ = 0.12(3) quanta/ms and with added noise ṅ↔ = 0.15(3) quanta/ms.
In contrast, the measured ratios are R = 4.2(5) without adding noise and R = 34(9) with
added noise. This indicates that we can align the trap axes with the electric field generated
by the center electrode (at angle φg) with adequate precision.

Conclusions

Because surface noise and technical noise are polarized in different directions, we can use
these measurements to estimate the amplitude of surface noise even in the presence of tech-
nical noise. First, we assume a surface noise model featuring a ratio of Rsurf = 2, as well
as additional technical noise with an unknown ratio Rtechn. It is convenient to perform the
measurement at angle φg as this angle can be set with highest precision. Assuming that sur-
face and technical noise are not correlated, the noise power spectral density is additive (the
fields add in squares): Stot = (Ssurf +Stechn) with Stechn originating from voltage independent
technical noise. The ratio of the heating rates between both axes is measured and thus it is
possible to estimate the magnitude of the surface noise as

Ssurf,↔ = Stot,↔
Rtot −Rtechn

Rsurf,φ −Rtechn

. (6.31)

For the measured ratio Rtot = 4.2(5) and the expected ratio for patch potentials Rsurf,φ =
Rsurf cos 2φ = 2 cos 2φ, this leads to Ssurf,↔ = 1.8(2)× 10−12(V/m)2/Hz. One needs to keep
in mind that this noise amplitude is measured at the angle φg. The surface noise magnitude
parallel to the trap surface (along the x-axis) is then

Ssurf,x =
Ssurf,↔

Rsurf sin(φ)2 + cos(φ)2
= 1.7(2)× 10−12(V/m)2/Hz . (6.32)

It will always be possible to construct technical noise models which explain our results by
carefully choosing the amplitudes and correlations of the various voltage supplies. However,
those models seem rather contrived. Assuming a simple and realistic technical noise model
and a surface noise caused by either surface dipoles or fluctuating patch potentials, we can
disentangle the contributions from technical noise and surface noise with high confidence.
From this we can conclude that technical noise is irrelevant to the field noise parallel to the
trap surface, while its contribution in the vertical direction is comparable to surface noise.
Using this method it will be possible to compare heating rates from different traps, allowing
a meta-analysis of different experiments.
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6.4 Experiment: Motional coherence of trapped ions

It is also possible to use single trapped ions to study dephasing processes (Sec. 6.1). This
section concerns work first published in Ref. [67]. For this experiment, theory and analysis
was done by the present author, while the measurements were performed by Ishan Taluk-
dar. The experiment was performed in a different experimental setup than the work in the
previous Section.

The purpose of this experiment was to study the motional coherence of ions as it pertains
to quantum information processing experiments in surface traps. In particular, we were
concerned by the possibility that low motional coherence times may limit the fidelity of
two-qubit entangling gates even when heating rates are quite low. Indeed, the simple noise
model in Sec. 6.2 suggests that the heating rate should scale as d−4, while the rate of
dephasing should scale as d−6, where d is, as usual, the ion-electrode distance. Thus, for
traps sufficiently small, we expect the dephasing time to be much faster than the heating
rate.

Motional dephasing results from low-frequency fluctuations in the trapping potential as
seen by the ion. Many theoretical models of surface noise predict that the power spectrum
should change from spectrally flat white noise below a cutoff frequency ωir into 1/ωβ-noise
above the cutoff. The frequency of this cutoff may help discriminate between physical noise
models and provide insight into the physical processes giving rise to surface noise effects.

In this Section, we use a single ion as a noise sensor for the low-frequency behavior of
surface noise. Experimentally, we apply the Ramsey-style interrogation of the ion motion
discussed in Sec. 4.7 and Sec. 6.1. A schematic of the experimental pulse sequence is given
in Fig. 6.1. Briefly, the axial mode of a single ion is Doppler cooled, and then coherently
displaced by a train of 397 nm laser pulses, generating a displacement |α|2 ≈ 50. The
repetition rate of the train is detuned from the trap frequency by the small amount δm.
After an interrogation time τ , the displacement is applied again, wherein the relative phase
between the pulse train and the ion’s motion has evolved by δmτ . The final displacement
amplitude |α|2 is determined by a short 729 nm laser pulse applied to the blue axial sideband
and the D-state occupation probability is measured by electron shelving. The displacement
amplitude is measured by determining the Rabi frequency on the sideband transition, as
discussed in Ref. [52].

Without dephasing, the final displacement amplitude evolves periodically with frequency
δm, oscillating between 0 and 2α. Additional dephasing due to perturbations of the mo-
tional frequency leads to a random phase evolution, reducing the contrast of the oscillations
(Fig. 6.5(a)).

Spectral model

The inferences in this experiment rely on two main assumptions: First, we assume a simplified
form for the noise power spectrum, shown in Fig. 6.5(b). That is, we assume that above
some frequency ωir, the noise scales as ω−β for some β > 0. To prevent an infrared divergence
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Figure 6.5: (a) Displacement amplitude |α|2 vs interrogation time τ in ms. The solid red
line is a fit to a model which depends on the overall amplitude of the noise as well as its
spectral features. (b) The noise power spectrum assumed in the analysis. It is believed that
the noise goes as ω−β over some range (ωir, ωu). We assume that the power spectrum rolls off
to ∼ ω0 below the low-frequency cutoff ωir. If β ≤ 1, the power spectrum is required to have
a high-frequency cutoff at ωu so that the total noise power is finite. Such a high-frequency
cutoff would be significantly higher frequency than our measurements are sensitive to, and
thus does not enter the analysis. This figure was originally published in Ref. [67].

in the total noise power, we impose a roll-off at ωir, below which frequency the noise scales
as ω0. The experiment is not sensitive to frequencies much faster than 1/τ ∼ kHz, where
τ is the interrogation time between displacement operations, so the high-frequency form of
the spectrum is irrelevant. The second assumption is that the spectrum of quadrupolar
fluctuations is related to the spectrum of electric field fluctuations in the way discussed in
Sec. 6.2:

SQxx =
15

4d2
SEx , (6.33)

where d is the ion-trap distance (50 µm, in this case).
The electric field fluctuations, SE have been measured in this trap over a range of frequen-

cies (see Fig. 6.6) from 350 kHz to 1.3 MHz. Such a measurement is performed by adjusting
the electrode voltages to achieve the desired trap frequency and measuring the heating rate
in this configuration. The measurements here yield a scaling factor β = 0.9(0.2). In the
literature, other values of β are found, ranging from (-1) - (+7) [9].
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Figure 6.6: Heating rate vs. trap frequency for the trap discussed in this experiment. The
heating rate shows a scaling of ω−1.9(0.2), implying SE ∼ ω−0.9(0.2). This figure was originally
published in Ref. [67].

Heating rate measurements probe the spectral noise density at a specific frequency–i.e.,
the motional frequency of the ion. However, heating rate measurements cannot probe the
noise spectrum at very low frequencies due to ion loss. As the trap frequency is relaxed, the
trap depth also decreases, reducing ion lifetime in the trap until it is infeasible to continue
with experiments. The reduced ion lifetime is probably due to collisions with background
gases which can eject the ion from the trap if the depth is small enough. Nevertheless, we
attempt to make inferences about the low-frequency noise characteristics based on measure-
ments of the dephasing noise.

Given the frequency scaling β, the low-frequency roll-off ωir, and the heating rate at a
particular trap frequency ω0, the noise spectrum may be extrapolated down to zero frequency
as:

SE(ω) =

SE(ω0)
(
ω0

ω

)β
if ω > ωir

SE(ω0)
(
ω0

ωir

)β
if ω < ωir.

(6.34)

In order to make use of our results from Sec. 6.1, we need to put our quadrupolar
fluctuations in the form of Eq. 6.5. The noise enters the Hamiltonian via the random electric
potential

qΦ(t) =qQxx(t)x
2 (6.35)

=qQxx(t)
~

2mωax

(a2 +
(
a†)2 + a†a+ aa†

)
(6.36)

≈qQxx(t)
~

mωax

a†a, (6.37)

where ωax is the axial trap frequency, m the ion mass, and a and a† the harmonic oscillator
creation and annihilation operators respectively. I neglect a2 and (a†)2 due to the rotating
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wave approximation and neglect the commutator [a, a†] = 1 because the quantum state of
the ion is assumed to be a large coherent state. Thus, to go into the notation of Sec. 6.1,

η(t) =
q

mωax

Q(t), (6.38)

and therefore

Sη(ω) =

(
q

mωax

)2

SQxx(ω). (6.39)

To relate all of this back to the heating rate measurements, we have:

Sη(ω) =

(
q

mωax

)2(
15

4d2

)
SE(ω0)×


(
ω0

ω

)β
if ω > ωir(

ω0

ωir

)β
if ω < ωir.

(6.40)

The electric field noise spectral density can be determined from Eq. 6.3:

SE(ω0) =
m~ω0

q2π
Γ0, (6.41)

where Γ0 is the heating rate when ωax = ω0.

Analysis

In Eq. 6.14, I claimed that the Ramsey-style fringes in this experiment (Fig. 6.5(a)) should
be damped by an exponential factor involving the power spectrum of frequency fluctuations.

The primary goal of the analysis was to estimate the roll-off frequency ωir. Because the
noise at low-frequency is extrapolated from high-frequency measurements, the estimate will
depend on the factor β which determines how the noise scales with frequency in the high
frequency regime. As different measurements have found conflicting values of β [9], we run
the analysis for several different values of β ranging from 1 to 2.

With the parameter β fixed, the fringes in Fig. 6.5(a) were fit to the following form

|α|2(τ) = A cos(δmτ) exp

(
−
∫ ∞

0

Sη(ω)
sin2(ωτ/2)

(ω/2)2
dω

)
. (6.42)

where Sη is given in Eq. 6.40. In the fit, β is taken fixed, and fit is performed over the

overall amplitude A and the cutoff frequency ωir. The filter function sin2(ωτ/2)
(ω/2)2

drops quickly

to zero as ω � 1/τ . This means that the experiment is sensitive only to low-frequency noise.
Furthermore, it means that we do not need to make any assumptions about the behavior
of Sη(ω) above the trap frequency. The results are shown in Fig. 6.7. The low-frequency
cutoff estimate depends strongly on the choice of scaling exponent. On the low end, we find
a cutoff estimate of 10−4 Hz if β = 1, as compared to about 1 kHz if β = 2. The error
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Figure 6.7: Cutoff frequency ωir as a function of the assumed scaling law β. Error bars are
the standard errors from the fit.

bars in that plot are the standard errors resulting from the numerical fitting procedure. An
entire experimental run, varying the Ramsey duration from 0 to 10 ms, can take up to about
10 minutes to complete. This time sets the minimum frequency to which the experiment is
sensitive. To enforce this in the analysis, we enforce a minimum ωir ≥ 10−4 Hz. For this
reason, the smallest four cutoff estimates around β = 1 all lie on a line.

We can compare these findings to certain theoretical results. For example, the surface
diffusion model [22, 73] predicts a exponent of β ' 1.5 with an estimated low frequency cut-
off on the order of 10−7 Hz. Assuming β = 1.5 in the frequency regime below 100 kHz, we
extract from our data a cut-off of ∼ 300 Hz, much higher than the cut-off estimated by the
same model. Thus the surface diffusion model does not provide a consistent description of the
noise for the surface studied here. Another model suggests adatoms of high molecular mass
bound to the surface as the source for noise[60]. The cut-off in this model scales inversely
with the atomic mass of the adatom. The adatom model would require unreasonably large
(m ∼ several thousand a.u.) weakly bound atomic masses adsorbed to the surface to explain
the observed dephasing in Fig. 6.5(a). In that model, realistic cut-off frequencies are in
the range of one to hundreds of MHz. Thus, we conclude that some other noise process
either of technical or physical nature is responsible for the dephasing. The voltage stability
of the dc voltage sources supplying the trap electrodes was analyzed with a measurement
bandwidth of 10 mHz to 100 kHz. The rms voltage fluctuations on the dc electrodes was
found to be 10 µV. Electrostatic simulations of the trap geometry imply that this level of
voltage fluctuation would lead to a dephasing time of 36 ms, significantly longer than the
dephasing time observed in Fig. 6.5(a). However, technical noise sources cannot be excluded
with certainty. Thus, it will be valuable in the future to perform these measurements in
conjunction with surface-cleaning techniques [28, 13] to prove that the observed dephasing
is due to surface effects.
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Chapter 7

Quantum simulation of energy
transfer

7.1 Introduction

At press time, the results of this section were not published, but a manuscript is in prepa-
ration for submission to the peer-reviewed literature.

Analog quantum simulation refers to the notion that a controllable quantum system–e.g.,
a chain of trapped ions–can be made to mimic (or simulate) the dynamics of a theoretical
model system. This is particularly interesting when the model is believed to describe some
process in nature, but the model is challenging to study numerically. It is hoped that quantum
simulators can faithfully emulate models in a lab setting–thereby allowing experimental study
when analytical and numerical methods are unavailable. Ideally, the experiment permits
tuning the model parameters, allowing physical insight to be gained.

Since trapped ions may be used as qubits–controllable, two-level systems– it is quite
natural to use them to emulate coupled-spin systems [49]. As shown in Sec. 3.6 and Refs. [65,
57], the interaction between ion-qubits can mimic magnetically-coupled spins. For instance,
ion systems have simulated frustrated magnetism [39], and the transition of spin chains
from paramagnetic to ferromagnetic order [31], to cite two examples. The Hilbert space to
describe an N -spin system is of dimension 2N , meaning that simulation of a system as small
as “a few tens of spins” would challenge classical computational resources [7, 68].

In addition to the qubit degree-of-freedom, ion chains also possess a set of normal vibra-
tional modes. These modes are well-described by uncoupled quantum harmonic oscillators,
and can also be used as a resource for quantum simulation. The simplest example of this is
the Jaynes-Cummings model. By inspection of Eq. 3.17, it can be seen that the dynamics of
a single ion irradiated on the red sideband is described by the Jaynes-Cummings model [7,
34], where the electronic state of the ion corresponds to a two-level atom, and the vibrational
mode corresponds to an optical cavity mode. In a more complicated example, large Coulomb
crystals have also been suggested [50] to simulate the spin-boson model [42]. In that case, a
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Note that Eq. 6 is a set of equations of motion in the operator form,
and hence the numerical results are independent of the represen-
tation in which the equations are integrated. The hierarchically
coupled equations Eq. 6 continue to infinity, which is impossible
to treat computationally. In order to terminate Eq. 6 at a finite
stage, we replace Eq. 6 by

∂

∂t
σ̂(n, t) = −iL̂eσ̂(n, t), [9]

for the integers n = (n1, n2, . . . , nN ) satisfying

N ≡
N∑

j=1

nj ≫ ωe

min(γ1, γ2, . . . , γN )
, [10]

where ωe is a characteristic frequency for L̂e (18). Thus, the
required number of the operators {σ̂(n, t)} is evaluated as∑N

k=0
(k+N−1

N−1

)
= (N + N )!/(N!N !). Note that low-temperature

correction terms explained in Appendix should be included into
Eq. 6 when the high-temperature condition β!γj < 1 is not
satisfied.

As demonstrated in ref. 18, the reduced hierarchy equation
Eq. 6 can describe quantum coherent wave-like motion, incoher-
ent hopping, and an elusive intermediate EET regime in a unified
manner, and reduces to the conventional Redfield and Förster
theories in their respective limits of validity. Recently, Jang et al.
(15) developed another quantum dynamic equation to interpo-
late between the Redfield and Förster limits by employing the
small polaron transformation (36). The small polaron approach is
based on the second-order perturbative truncation with respect to
the renormalized electron-phonon coupling, whereas the present
hierarchy approach is derived in a non perturbative fashion. It
will be interesting to compare the two approaches for future
works.

Results and Discussion
In this section, we present and discuss numerical results regarding
EET dynamics in the FMO complex of C. tepidum. The complex is
a trimer made of identical subunits, each containing seven BChls.
Because the strongest electronic coupling between two BChls in
different FMO monomeric subunit is about an order of magni-
tude smaller than the local reorganization energies, the coherence
between them is rapidly destroyed by the environmental distur-
bance (26). Therefore, we assume that the intersubunit coupling
is vanishingly small and we consider the EET dynamics within one
subunit. To simulate the EET dynamics, we use the Hamiltonian

Fig. 1. Seven BChl molecules belonging to the monomeric subunit of the
FMO complex. The complex is oriented with BChl 1 and 6 toward the base-
plate protein whereas BChl 3 and 4 define the target region in contact with
the reaction center complex. The spiral strands are α-helices that are part of
protein environment.

Fig. 2. Time evolution of the population of each BChl in the FMO complex.
Calculations were done for cryogenic temperature, T = 77 K. The reorgani-
zation energy and the phonon relaxation time are set to be λj = 35 cm−1 and
τc = γ−1

j = 50 fs, respectively.

for the trimeric structure of the FMO complex given in ref. 26
(supporting information (SI) Table S1.) We use the usual num-
bering of the BChls, which was originally chosen by Fenna and
Matthews (2) (see Fig. 1).

Although the spectral densityJj(ω) is a crucial factor to describe
EET dynamics, no direct and detailed information on its form is
available for the FMO complex at present. Hence, several empiri-
cal forms have been employed under the assumption that the spec-
tral densities for the different BChls are equivalent (11, 25–27, 33),
and then the phonon relaxation time τc estimated by Eqs. 4 and
5 ranges from 35 fs (26)∗ to 166 fs (25) in the literature. Recently,
Read et al. (27) conducted 2D electronic spectroscopic experi-
ments to visualize excitonic structure in the FMO complex of
Prosthecochloris aestuarii, and they performed simultaneous fitting
of the linear and 2D rephasing, nonrephasing, and polarization-
dependent spectra by employing the overdamped Brownian oscil-
lator model. To obtain excellent agreement between the exper-
imental data and numerical fitting, they adopted λj = 35 cm−1

and τc = γ−1
j = 50 fs as the values of reorganization energy and

relaxation time of the phonons, respectively. Therefore, we also
employ these values with the assumption that the phonon spectral
densities for the individual BChls are equivalent. For numerical
integration of Eq. 6, the depth of hierarchy we employed here is at
most N = 12. For all calculations, the accuracy were checked by
changing the values of N to make sure that the numerical results
are converged.

EET Dynamics and Temperature Dependence Following the previous
proposal based on theoretical calculations (26), the FMO com-
plex has been assumed to be oriented with BChl 1 and 6 toward
the baseplate protein whereas BChls 3 and 4 define the target
region in contact with the RC complex. Recently, this orienta-
tion was verified experimentally by Wen et al. (5). Accordingly,
we adopt BChls 1 or 6 as the initial excited pigment for numerical
calculations.

Fig. 2 presents the EET dynamics at cryogenic temperature,
T = 77 K. These results clearly show that the energy flow in the
FMO complex occurs primarily through two EET pathways, which
connect spatially proximate and excitonically coupled BChls as
demonstrated by Brixner et al. with 2D electronic spectroscopy
(11, 25):

∗ The relaxation function and the symmetrized correlation function at 300 K produced by
the spectral density in ref. 26 show nonoscillatory negative values from 80 fs to 1 ps, whose
physical origin is not yet clear. Hence, it is impossible to estimate the relaxation time τc by
employing Eq. 5. Here, we have estimated the relaxation time only from the initial decay
(<80 fs) of the relaxation function.

Ishizaki and Fleming PNAS October 13, 2009 vol. 106 no. 41 17257

Figure 7.1: Image taken from Ref. [30]. One subunit of a Fenna-Matthews-Olson (FMO)
pigment-protein complex, found in green sulfur bacteria. The seven numbered objects are
bacteriochlorophyll molecules, each one modeled as a two-level energy site. Excitations can
tunnel between sites, and the sites are coupled to molecular vibrations.

set of vibrational modes of the ion crystal may be used simulate a bosonic environment with
many degrees of freedom. By coupling a single ion-qubit to the simulated bath, quantum
decoherence effects may be experimentally studied in a controlled way.

This Chapter discusses quantum simulation of energy transfer problems using ion chains.
In this class of simulations, the qubit states of the ions and the vibrational modes of the
crystal are all used as resources. In particular, we study energy transfer between quantum
two-level systems which are coupled to each other as well as to a vibrational environment.

This is motivated by considering energy transfer problems in biochemical systems. One
canonical example is energy transfer through photosynthetic light-harvesting complexes [30,
1, 10]. In this process, photons are absorbed and converted into molecular excitations. In
order to be used as chemical energy in the cell, this excitation must be transferred to a cellular
reaction center through a pigment-protein complex (Fig. 7.1). The pigment-protein complex
is a collection of pigment molecules typically modeled as two-level systems where the excited
state corresponds to energy localized to one particular pigment. The pigments are coupled to
each other, as well as to a structured vibrational environment provided by vibrational modes
of the molecules. Differences in the site energies of each pigment, as well as the presence
of the vibrational environment would intuitively seem to reduce energy transfer efficiency,
and so it is surprising to find that the process occurs with near-unity efficiency [30]. It is
now believed that the molecular vibrations actually assist in the transfer process, providing
a source of energy to overcome site energy differences between pigments. This assistance is
a rather general phenomenon known as vibrationally assisted energy transfer (VAET).

Owing to the large Hilbert space under consideration, models of these protein-pigment
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complexes are difficult to study theoretically. The subunit shown in Fig. 7.1 requires an
excitonic Hilbert space of dimension 27. The vibrational Hilbert space is in principle infinite
because it is described by harmonic oscillators, though in numerical simulations the Hilbert
space is truncated. In order to avoid brute-force simulation of the full model, approximation
techniques are often applied which rest on various assumptions about the site-site couplings,
the site-bath couplings, or relaxation time of the bath [54, 19, 30]. However, these assump-
tions are not universally valid, and exact numerical treatments of small pigment-protein
complex models seem to differ qualitatively from the standard approximation methods [71].
Exact numerical solutions suffer from the exponential scaling problem of classically simulat-
ing quantum systems, suggesting a useful role for quantum simulators.

It is not our intention to specifically encode the dynamics of a particular light-harvesting
molecule in an ion chain. Rather, we aim to implement the basic models describing the
transfer process and study these models in a well-controlled setting. This allows us to
gain intuition for what the models predict in various parameter regimes, and in the future
to study the validity of approximation schemes. In this work, we focus on vibrationally-
assisted energy transfer, and demonstrate the emergence of this phenomenon in a simple
two-site system. We show that a quantum environment, represented by a single thermalized
harmonic oscillator, can assist in energy transfer between two sites even when the sites
exhibit different local energies. We explore this phenomenon by varying the strength of the
site-bath coupling, the quantum state of the bath, and the relative detuning between the
sites. We find a rich phenomenology even for this simple system, and discuss avenues for
extending the experiment to feature more complicated dynamics.

7.2 Model

In particular, we implement VAET through the following Hamiltonian (~ = 1):

H =
∆

2
σ(d)
z +

J

2
σ(d)
x σ(a)

x +
κ

2
σ(d)
z (a+ a†) + νeffa

†a. (7.1)

This Hamiltonian describes two-level energy sites, designated donor (d) and acceptor
(a), coupled with strength J (see Fig. 7.2(a)). In the absence of additional interactions,
this coupling will cause a single excitation to oscillate between the sites with frequency
J . A relative energy detuning ∆ imposes an energy cost to move excitation between the
sites, therefore inhibiting complete transfer of the excitation between sites. Under certain
circumstances, the addition of a bosonic environment can aid in the energy transfer process,
even when ∆ is so large that the transfer would otherwise be almost completely turned off.

The environment is modeled as a harmonic oscillator with frequency νeff and is coupled
to the sites with strength κ. In a semi-classical picture, a site-bath coupling of the form
κ
2
σz(a + a†) + νeffa

†a modulates the energy of one site at the vibrational frequency of the
environment. κ functions as a modulation index, parametrically moving energy between the
sites. In the quantum regime, the role of the environment may be understood as providing an
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Figure 7.2: (a) Schematic illustration of the VAET process. When κ = 0 (top drawing), the
transition probability from the donor state (black line), to the acceptor state (blue line), is
attenuated in the presence of an energy barrier ∆ between the states. When κ > 0 (bottom
drawing), the system can move between the donor state (solid black line) and the acceptor
state (red line), by exchanging energy with a phononic environment. (b) Time dynamics
of the acceptor state population in three situations illustrated in (a). Black line (theory)
and data points: ∆ = 0, where coherent energy transfer occurs with frequency J . Blue
line (theory) and data points: ∆ > J , but without assistance of the phononic environment,
reducing transfer efficiency. Red line (theory) and data points: ∆ > J , but the environment
assists in the transfer process. The process is slower than the resonant coupling, but occurs
with high efficiency.

extra degree of freedom which makes the energy transfer process energetically allowed. For
instance, if νeff ≈

√
∆2 + J2, inter-site transfer can occur provided the environment changes

its vibrational quantum number by one (see Fig. 7.2(a) and (b)). Higher-order processes also
occur: if νeff ≈

√
∆2 + J2/k, inter-site transfer is allowed when the environment changes by

k vibrational quanta.

7.3 Experimental implementation

Our simulator consists of two trapped Ca+ ions confined in a radio-frequency (RF) Paul trap
(Fig. 7.3). In this simulation, we encode the energy sites in the internal electronic state of the
ions. The internal structure of Ca+ is discussed in Sec. 3.1. In particular, the magnetic sub-
states |S〉(mj = 1/2) and |D〉(mj = 1/2) form a qubit, addressed by an optical transition
at 729 nm. The combined state |DS〉 corresponds to a single excitation localized to the
donor site, and |SD〉 corresponds to an excitation localized to the acceptor site. The two-ion
crystal contains six normal vibrational modes, only two of which are relevant to implement
the Hamiltonian in Equation 7.1: the axial stretch mode with ωax = 2π× 1.3 MHz, and the
radial rocking mode at ωr = 2π×2.1 MHz. The axial stretch mode provides a bus to transfer
excitation between the two sites via a two-qubit Mølmer-Sørensen quantum interaction [65].
The rocking mode serves as the thermally occupied bosonic environment in the simulation.
These modes are defined in Sec. 2.3.
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Figure 7.3: Schematic drawing of the 3D trap and laser beams used in this experiment.
Two Ca+ ions are confined in the trap. A global 729 nm laser beam along the axis of the
trap generates the Mølmer-Sørensen interaction which produces the site-site coupling. A
tightly focused laser beam is localized to the donor ion and is used for single ion rotations
and generating the site-bath coupling.

We have chosen to use the axial stretch mode and the radial rocking mode (as opposed
to the center of mass modes) because of heating rate considerations. The center of mass
modes have a heating rate of around 0.1-0.2 quanta/ms. Since the entire simulation takes
2-3 ms to complete, there is a substantial probability to experience heating in the simulation
during the interaction time, which would need to be included in the model dynamics. The
stretch and rocking modes, however, have a measured heating rate which is smaller by about
an order of magnitude, and so we neglect this effect in the simulation dynamics.

The simulation relies on two engineered interactions applied at the same time. The
σ

(d)
x σ

(a)
x term in Eq. 7.1 is due to a global Mølmer-Sørensen interaction, discussed in Sec. 3.6.

This is accomplished via a bichromatic 729 nm laser beam along the axis of the trap. The
second engineered interaction is the site-bath coupling, of the form σz(a + a†). This is
accomplished via a tightly focused laser beam localized to the donor ion. This interaction
is discussed in Sec. 3.6. The local beam also contains two laser tones, which are separated
in frequency by ωr + νeff . The laser tone frequencies are shown in Fig. 7.4. The model
parameters J and κ are adjusted by controlling the powers of the global and local beams,
respectively.

The laser beams are made bichromatic by applying two rf-tones to a single pass acousto-
optic modulator (AOM). This is done by combining two frequency sources on a power com-
biner. Each laser beam can be switched between bichromatic and monochromatic operation
by a TTL signal. The electrical and optical layout is discussed in Sec. 4.2 and Fig. 4.9.

The site energy of the donor ion is shifted by ∆ relative to the acceptor ion by an AC
Stark shift. Currently, this is implemented by adjusting the relative powers of the two tones
in the localized beam. It would also be possible to introduce a third tone to the local beam
to generate the AC Stark shift. This would have the advantage of allowing the AC Stark
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Figure 7.4: Schematic drawing of the laser tone frequencies used to generate the Hamiltonian
in Eq. 7.1. The tall black line denotes the optical transition from |S〉 → |D〉. Shorter black
lines denote the relevant motional sidebands for the axial and radial modes. Both ions are
equally illuminated with the Mølmer-Sørensen laser beam, which contains tones near the red
and blue axial sidebands. In addition to this, the acceptor ion has two more tones, detuned
from the carrier transition by about ωr/2, to generate the site-bath coupling.

shift to be tuned independently of κ.
Before each experiment, both the axial center-of-mass and stretch modes are sideband

cooled to a mean thermal occupation less than one quantum. The axial center-of-mass mode
does not serve a role in the simulation. However, nonzero temperature in this mode causes
Doppler broadening of the carrier transition as seen by the Mølmer-Sørensen beam, dephasing
the energy transfer between resonant sites. For similar reasons, we also perform sideband
cooling of the radial center-of-mass mode, to improve the fidelity of the σz(a+a†) interaction.
As noted above, the radial rocking mode serves as the environment in the simulation. We
control the temperature of this mode by adjusting the duration of sideband cooling (Sec. 3.4).
By this method, the mean thermal occupation n̄ may be adjusted in the range from 0.04 <
n̄ < 12. The Doppler limit for this mode is n̄ = 6, but by choosing somewhat sub-optimal
Doppler cooling parameters, it is possible to prepare the environmental mode above the
Doppler limit.

The experimental procedure is as follows: initially, both ions are optically pumped into
the state |SS〉. The assisting mode is then thermalized via sideband cooling as discussed
above. The experiment begins by exciting the donor via a local rotation of the donor ion,
leading to the combined electronic state |DS〉. Then, the local and global laser beams gen-
erating the model Hamiltonian are applied for a variable time τsim. Finally, the combined
electronic state of both ions is read out on a charged-coupled device (CCD) camera by an
electron shelving measurement (Sec. 3.5). For each parameter setting {J , κ, ∆, νeff}, the
simulation is run 100-500 times, and the population in each electronic state is constructed
by averaging the results. The probability that the excitation has transferred to the accep-
tor is the |SD〉 state population. For the time dynamics data, we report the conditional
probability P that the system has undergone state transfer, i.e. P = PDS/(PSD + PDS). T
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his accounts for population loss in the simulation subspace (primarily due to infidelities in
state preparation and off-resonant excitations from the local beam), but does not change the
qualitative features of the dynamics.

7.4 Results
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Figure 7.5: Probability P to find the system to undergo energy transfer to the target state
as a function of simulation time τsim and vibrational frequency νeff . The upper plots show
the time dynamics P (t) with νeff ≈ +4 kHz (blue points) and νeff ≈ −4 kHz (red points)
for a mean thermal occupation of (a) n̄ = 5 and (b) n̄ = 0.5. The lower plots show P as a
function of νeff , where the simulation time is fixed to 0.7 ms for a mean thermal occupation
(c) n̄ = 5 and (d) n̄ = 0.5. For all cases, (J, κ,∆) = 2π × (1.30(1), 1.40(4), 4.00(2)) kHz
In the time traces, the solid lines are a numerical simulation of the system dynamics where
all parameters were determined through independent calibration measurements. The solid
lines in the spectral plots are also a numerical solution where a small overall shift to the
frequencies is adjusted to correct a systematic measurement offset in the ion’s vibrational
frequencies. The measured data points in the spectral plots are connected with a dashed
line to guide the eye

We probe the VAET phenomenon through spectroscopy as well as study its time dynam-
ics. For the spectroscopic measurements, we fix particular values of J , κ, ∆, and simulation
time τsim. We vary the frequency νeff and measure the probability to find the ions in the
acceptor state |SD〉. VAET is most clearly illustrated in the regime ∆ � J , such that
inter-site energy transfer does not occur without the assistance of the environment. This
situation is shown in Fig. 7.5, where significant energy transfer occurs within 1 ms, with the
appropriate environmental frequency.
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Figure 7.6: Acceptor state population vs νeff . A typical detuning scan in the small ∆ regime,
showing only two peaks. In this case, τsim = 0.7 ms and n̄ = 2.7. The other parameters
are: (J, κ,∆) = 2π × (1.22(3), 0.63(2), 1.226(3)) kHz. system for independently measured
parameters.

In the spectral scans, (Fig. 7.5(c) and (d)), several peaks are visible. The first peak,
at around νeff = −2π × 4 kHz, corresponds to a process wherein the system goes from
|DS, n〉 → |SD, n+ 1〉, where n indexes the vibrational quantum number of the environment.
The next set of peaks, not fully resolved, correspond to processes where the environment
gains k > 1 vibrational quanta, |DS, n〉 → |SD, n+ k〉.

As νeff crosses zero, the environment goes from gaining energy to losing energy in the
transfer process. The peaks at νeff > 0 correspond to processes |SD, n〉 → |DS, n− k〉, k ≥
1. The height asymmetry between the νeff < 0 and νeff > 0 peaks is a signature of the
quantum nature of the environment. The asymmetry emerges when the environment has
significant population in the n = 0 ground state. In that case, inter-site transfer is suppressed
because the environment cannot provide the necessary energy. The peak height asymmetry
begins to disappear as the thermal occupation of the environment is increased. This is seen
experimentally by comparing Fig. 7.5(c), where the environment contains an average of 5
vibrational quanta, to Fig. 7.5(d), where the environment has mean thermal occupation
of 0.5 quanta. The asymmetry is much more pronounced in the lower temperature data.
Correspondingly, for the high temperature data, the time dynamics of the process is nearly
identical for either sign of νeff (Fig. 7.5(a)). Meanwhile, at low temperature, the transfer
efficiency is much lower for positive νeff .

For ∆ sufficiently large, each process |SD, n〉 → |DS, n+ k〉 is resolved and occurs at a
different frequency, as shown in Fig. 7.5 (b) and (d). However, when ∆ becomes comparable
to J , these processes all occur simultaneously, and numerical methods are then required to
study the dynamics. In this case, as shown in Fig. 7.6, the peaks corresponding to changes
in the environmental quantum number are no longer spectrally resolved.

In the small ∆ configuration, the dynamics of the process changes appreciably as the
environmental coupling κ and the temperature are varied. These changes are most apparent
when the system is prepared near the motional ground state (Fig. 7.7). For comparison,
we run the simulation for three different values of κ. For small κ, the excitation transfer
is modulated by the environmental coupling, as can be seen in the time dynamics. As κ is
increased, the transfer speed increases but also changes qualitatively. In contrast to the pure
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Figure 7.7: Probability P for energy transfer vs simulation time for different values of κ,
with the environmental mode prepared to a mean thermal occupation n̄ = 0.04 vibrational
quanta. In all three scans, all parameters except κ are approximately constant. Ordered
from top to bottom: J = 2π× (1.27(3), 1.22(3), 1.32(3)) kHz ∆ = 2π× (1.22(3), 1.24(3),
1.36(4)) kHz, νeff = −2π× (1.71(5), 1.69(5), 1.77(6)) kHz. κ increases from top to bottom,
taking the respective values 2π× (0.229(6), 0.37(1), 0.64(2)) kHz. In all plots, the solid
traces are the predicted dynamics with no free parameters.

Figure 7.8: Probability P for energy transfer vs. τsim in the high temperature (n̄ = 12)
regime. Simulation parameters: (J, κ,∆, νeff) = 2π×(1.17(3), 0.63(2), 1.59(3),−1.72(6)) kHz

state dynamics of the system, finite temperature both increases transfer speed and damps
the oscillatory behavior of the dynamics (Fig. 7.8).

7.5 Calibration of parameters

An important component of a quantum simulator is the ability to independently measure
the model parameters. In Eq. 7.1 the parameters which must be determined are J , κ, ∆,
and νeff . In addition, the initial thermal population of the environment must be measured.
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Measuring J

The easiest parameter to measure is J . This is done by turning the local beam off during
the simulation, effectively setting ∆ = κ = 0. The two-ion system is then prepared in the
combined state |DS〉 via a local rotation of the donor ion, and the electronic populations
are measured on a CCD camera (see Fig. 3.8). The data are fit by a least- squares method
to extract J .

Measuring κ

κ is somewhat more difficult to measure than J , especially for small values. In principle, it
would suffice to measure κ with the Ramsey method discussed in Sec. 3.6. In that discussion,
a π/2 pulse prepares a single ion in the state |S〉+ |D〉. After this, the bichromatic beams are
turned on for some time, and a second π/2 pulse is applied, followed by state measurement in
the |S〉, |D〉 basis. The decay of the Ramsey fringe contrast in this measurement in principle
measures κ, but this effect must be disentangled from other decoherence sources such as
magnetic field fluctuations which occur on the same timescale. In our case, the electronic
state coherence is around 2 ms [51].

To avoid this complication, we instead use Eq. 3.38, making the association

κ = ηr
Ω1Ω2

2ωr
, (7.2)

where ηr is the Lamb-Dicke parameter for the local beam onto the radial rocking mode, and
Ω(1,2) are the Rabi frequencies of the two laser fields in the local beam.

ηr is measured by sideband cooling the ωr mode near the ground state, and then mea-
suring the frequency of Rabi oscillations on the blue sideband. For the geometry in this
experiment, we find ηr = 0.039(1).

Once ηr is known, the Rabi frequencies of each tone must be measured. It is helpful
at this point to recall Fig. 4.9. Each 729 nm laser path goes first through a double pass
AOM setup, and then through a single pass AOM before arriving at the trap. The double
pass AOM provides wide band frequency control of the beam, while the single pass AOM
is used to make the laser beam bichromatic. To measure the Rabi frequencies in each tone,
the ωr mode is first sideband cooled. Following this preparation step, the local beam is
switched to bichromatic mode, but the double pass AOM driving frequency is shifted by
+ωr/2, such that one tone of the bichromatic beam is resonant to the carrier transition,
and the frequency of Rabi oscillations is Ω1. Then, the process is repeated, but the double
pass AOM driving frequency is shifted by −ωr/2, and then the frequency of carrier Rabi
oscillations is Ω2. In each of these measurements, one tone of the bichromatic beam is
resonant to the carrier, and the other is resonant to either the blue or red sideband. The
presence of the tone driving the sideband affects the dynamics only slightly because the
sideband Rabi frequency is less than 4% that of the carrier with the mode in the ground
state. In addition, a small shift of the double pass frequency by a few kHz will greatly reduce
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Figure 7.9: Energy transfer probability P vs. simulation time for the small ∆ regime, and
νeff = 2π × 30 kHz. In this case, J = 2π × 1.4 kHz, ∆ = 2π × 1.1 kHz. The line is a fit to
the model in Eq. 7.3.

the driving of the sideband while hardly affecting the rate of carrier Rabi oscillations. One
remaining systematic effect is the change in double pass diffraction efficiency as a function of
the driving frequency. In the calibration measurements, the double pass frequency is shifted
±ωr/2 relative to its frequency when the simulation is run. The intensity change is measured
on a photodiode to be around 5%, and is introduced as a correction factor in determining
Ω(1,2). These measurements are sufficient to determine κ, which may be tuned from 0 up to
around 1.5 kHz. The measurement errors in κ (listed in Sec. 7.4) arise from the uncertainty
in η, as well as the error in fitting Rabi oscillations from Ω(1,2). The primary factor limiting
κ is that the Rabi frequencies of the individual tones must be small as compared to their
detuning from the carrier transition (2π× MHz) so as not to induce off-resonant excitations.
For the largest values (κ = 2π × 1.7 kHz), Ω(1,2) ≈ 2π × 300 kHz.

Measuring ∆

∆ is measured in two different ways. For ∆ not too large as compared to J , it can be
measured by the following procedure. First, one tone of the σz(a+ a†) interaction is shifted
by +2π×30 kHz from ωr/2. This has the effect of setting νeff = 2π×30 kHz–much larger than
∆. We thus expect that κ does not contribute to the dynamics, and the model Hamiltonian
reduces to

H =
J

2
σ(d)
x σ(a)

x +
∆

2
σ(d)
z . (7.3)

The ions are first prepared into the state |DS〉, and then both the global and local beams
are turned on. The population in the acceptor state |SD〉 is measured as a function of
time. The acceptor state population is modeled using a quantum dynamics solver [36] for
the Hamiltonian in Eq. 7.3. The model is then fit by least-squares to find ∆ (see Fig. 7.9).

This method introduces a systematic error which must be accounted for, however. The
shift of one laser tone by about 30 kHz relative to its frequency during the actual simulation
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Figure 7.10: Parity oscillations of the two-ion electronic state. The local beam is on, but the
global beam, generating the Mølmer-Sørensen coupling is left off so as not to interfere with
the parity oscillations. The solid line is a fit to determine ∆ = 2π × 3.6 kHz.

introduces an additional AC Stark shift of up to 200 Hz which is not present when the
simulation is actually run. At present, this is corrected in an analytic way. The residual
Stark shift ∆r is calculated using a two-level atom approximation (Eq. 3.28):

∆r =
Ω2

1

2

(
1

ωr/2
− 1

ωr/2 + 2π × 30 kHz

)
. (7.4)

Ω1 is assumed to have already been measured in the previous section. A better method would
be to repeat the measurement but in the second iteration, shift the frequency by −30 kHz,
and take the average of the measured detunings.

When ∆ � J , the population transfer is too small to fit for the detuning. In that case,
∆ must be measured directly via parity oscillations [11]. First, a global π/2 pulse is applied
to both ions. Then the bichromatic local beam is turned on, generating detuning ∆, but the
global beam (which does not generate local Stark shifts) is left off. After an interrogation time
τ , a second π/2 pulse is applied, and the resulting combined electronic state is measured,
and the parity P is recorded. The operator P is defined as P (|SS〉) = P (|DD〉) = 1.
P (|SD〉) = P (|DS〉) = −1. The parity P (τ) oscillates with frequency ∆, and so the parity
oscillations are used to extract this parameter (Fig. 7.10). Coupling to the environmental
mode does not cause phase contrast loss of the parity oscillations because νeff = 2π×30 kHz
is much larger than the other relevant parameters (J , ∆). Therefore, contributions from this
coupling quickly average to zero in the dynamics.

Remaining parameters

The only parameters left to determine are the thermal occupation of the environmental
mode, and the effective mode frequency νeff . The thermal occupation is extracted from
sideband spectroscopy (see Sec. 3.4) when the thermal excitation is low (less than 2 quanta).
Otherwise, the temperature is measured by comparing Rabi oscillations on the carrier and
blue sideband at the same laser power.
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The environmental simulated frequency νeff is defined in an interaction picture rotating
with frequency ωr + νeff . In this interaction picture, the Hamiltonian takes the form of
Eq. 7.1. The parameter νeff is then given by ωr minus the frequency splitting of the two
tones in the localized beam. In principle, it is therefore possible to determine this parameter
just by measuring ωr to high precision. In the experiment, the spectral scans are performed
by varying a frequency source around ωr/2. However, over the course of taking a full set of
data over several hours, ωr may change by up to 2 kHz. In order to avoid the additional
measurement overhead of tracking this parameter closely, the x-axis in the spectral scans is
adjusted so that the peak locations are symmetric about zero. The time scans are taken by
setting νeff to the outermost peaks.

7.6 Conclusions and future work

We have implemented an analog quantum simulation of vibrationally-assisted energy transfer
using trapped calcium ions, and studied dynamics across a range of parameter regimes,
including non-perturbative and non-Markovian dynamics. Our experimental results show
good agreement with brute-force numerical solution of the model. This experiment is a
building block towards a device for studying charge and energy transfer dynamics in more
complex models relevant to chemistry and biology. There are a number of directions in which
to extend this experiment. First, one can increase the complexity of the environment in order
to more closely mimic biochemical vibrational environments. The single quantized harmonic
mode implemented here models a long-lived resonant vibrational mode; it is possible to
couple the vibrational mode to a thermal bath via laser cooling, thus allowing one to tailor the
relaxation dynamics of the mode, and tune the system-environment dynamics continuously
from a non-Markovian to a Markovian regime. This would require embedding the simulation
in a large string of ions, where sideband cooling of the environmental modes is applied to
ancillary ions which do not participate in the simulation [27]. The use of ancillary ions allows
the explicit introduction of dissipation into the simulation without affecting the electronic
coherences of the simulation ions.

Also, by coupling to other vibrational modes in the ion crystal, one can add additional
long-lived vibrational modes to the structured environment. Finally, one can engineer ad-
ditional dephasing dynamics due to coupling to a high-temperature structureless bath by
adding fluctuations to the laser tone implementing the energy shift (∆) using a fast arbi-
trary waveform generator. Another direction for extending the simulation model is to add
more ions to mimic energy transfer in larger networks; understanding energy transfer in
large networks of varying morphology and energetic structure is critical to understanding
non-trivial transport behavior such as “quantum ratcheting” [29, 47], and designing exci-
tonic materials and devices [3]. In larger networks it may also be possible to simulate the
dynamics and propagation of multiple excitations (this depends on the complexity of the
exciton-exciton interaction one requires).

Overall, all of these extensions are achievable with current experimental technology. Each
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additional site in the network requires exactly one additional trapped ion. The coupling
to an additional vibrational mode requires two additional localized 729 nm laser tones,
necessitating an approximately linear increase in total laser power for constant couplings.
The required single-ion addressability with individual beams has been demonstrated, even
for a large chain of ions [15].

We thus believe that with moderate experimental improvements our approach can be
used to study models of energy transfer in physics, chemistry and biology, where analytical
and numerical treatments fail. This regime will be particularly interesting since the lack of
a theoretical prediction will not allow for an independent confirmation of the experimental
results.
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Chapter 8

Conclusions

This document began this work with a general overview of ion trapping technology (Chapter 2).
That Chapter discussed two types of rf Paul traps: the microfabricated surface trap and the
macroscopic, 3-dimensional Paul trap. We discussed how the dc potential near the trapping
region may be controlled, and slightly generalized the treatment to consider the case of two
ions in the same trap.

In Chapter 3, we explored the interaction of laser light with trapped ions. Lasers are a
primary toolbox for controlling the quantum states of ions. In the experiments, we use basic
light-matter interactions for Doppler cooling, sideband cooling nearly to the ground state of
motion, and projective measurement of the electronic state. We can also do coherent oper-
ations on the narrow |S〉 → |D〉 transition, in which the ion can be rotated into a coherent
superposition of |S〉 and |D〉. At a somewhat more complicated level, we create entangled
states of two ions by applying bichromatic laser beams. The experimental hardware to do
all of these manipulations is described in Chapter 4.

We extend the optical toolbox in Chapter 5, in which we parametrically couple two
vibrational modes of a single ion. This extends on laser-based control of the ion motion by
creating a completely electronic means of manipulating the motional quantum state. The
coupling is accomplished by applying a time-varying voltage with frequency ωp = ωi − ωj,
where ω(i,j) are the frequencies of two arbitrarily chosen vibrational modes.

With a single ion, this parameteric technique is useful for cooling modes which have only
a small projection onto the wave-vector of the cooling laser. In addition, it can be used
to measure the quantum state of an optically inaccessible mode by first swapping the state
of the inaccessible mode with an optically accessible mode and then performing standard
optical analysis of the accessible mode. As an example of this, we use this technique to
measure a heating rate in an inaccessible mode. In principle, the technique can be extended
to couple arbitrary normal modes of a Coulomb crystal, although this would require that the
potential created by the coupling electrode has substantial variation on the scale of the ion-
ion separation–an engineering challenge. However, microfabricated traps have been used to
split ion strings with dc potentials [5], proving that it is possible to make electrodes featuring
the required spatial potential variation. Another extension of the work is in the generation
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of non-classical states of motion. By setting the driving frequency ωp = ωi + ωj, the sum
frequency between two modes, the interaction generates two-mode squeezing.

Two experiments studying surface noise effects were shown in Chapter 6. In the first
experiment, we showed that technical noise, for instance arising from noisy voltage sources,
can be experimentally differentiated from surface noise sources. This allows the experimenter
to know whether the electrical noise observed in the experiment is most likely due to technical
sources, and therefore whether more work should be done to improve the electronics. It will
be valuable to perform this test in experiments which aim to study surface noise so that
technical noise can be ruled out.

In the second experiment, we studied dephasing of the ion motion. We found that the
motional phase coherence is lost after about 5 ms. We believe that this is due to surface
effects, as technical noise measurements did not seem sufficient to explain the observed
dephasing. Whereas heating rate measurements probe electrical noise at frequencies resonant
to the ion motion, our measurements probe noise at very low frequencies (sub-Hz to kHz).
Many theoretical noise models predict a power-law scaling of the surface noise which rolls
off to a flat frequency spectrum below a certain cutoff frequency. In the models the cutoff
frequency depends on the noise dynamics and therefore our measurements help discriminate
between competing theoretical models. However, our measurements are difficult to explain
by common physical models such as surface adsorption of atomic contaminants.

It will be useful to combine the experiment with surface-cleaning methods to see how the
dephasing time changes with surface treatment, thereby proving that surface noise is indeed
primarily responsible for the dephasing. In addition, it may also be interesting perform these
measurements while the trap surface is heated, as the surface adsorbate model contains a
temperature-dependent low-frequency cut-off. Regardless of the physical origin, we believe
that these effects will pose a strong challenge to the miniaturization of surface trap technology
for quantum information processing experiments. This is due to to the expected d−6 scaling
of the dephasing noise. Our measurements were conducted in a trap where the ion was
located d = 50 µm above the trap surface. With a 25 µm trapping height, we expect the
dephasing time to be 64 times smaller. Thus, an analogous experiment in a 25 µm trap
would be expected to show a dephasing time of less than 100 µs–comparable to the time
required to perform two-qubit quantum gates.

The final experiment in this work is documented in Chapter 7. In this experiment, we
implemented vibrationally assisted energy transfer in a two-ion system. The electronic levels
of the ions were used to simulate energy sites. The state |DS〉 corresponded to an excitation
localized to one ion (called the donor), and |SD〉 corresponded to an excitation localized
on the other ion (called the acceptor). The two energy sites were coupled together by a
Mølmer-Sørensen interaction, and an ac Stark shift detuned the |SD〉 level from the |DS〉
level, inhibiting transfer between the sites. By coupling the energy sites to a vibrational
mode of the ion crystal with an interaction of the form σz(a + a†), we showed that energy
transfer can be enhanced if the vibrational mode is resonant to the energy gap between donor
and acceptor sites.

The system mimics aspects of energy transfer processes in biochemical systems such as
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pigment-protein complexes. In this analogy, a vibrational mode of the ion crystal mimics the
effect of a molecular vibration on energy transport through the pigment-protein complex.
We explore how the dynamics changes as a result of the model parameters. For instance, we
show results for both large and small site detunings (as compared with the site-site coupling).
We showed a dependence of the transport dynamics as the temperature of the vibrational
mode is varied.

This experiment should be thought of as a proof-of-principle experiment, showing that
it is experimentally viable to use trapped ions to emulate energy transfer in the presence of
a thermalized vibrational environment. It will be interesting to extend the simulation along
several different directions. For instance, by applying amplitude noise to the ac Stark shifting
laser, it will be possible to explicitly introduce decoherence to the system in a controlled way.
The dynamics must then be treated in an open quantum system formalism, and the crossover
from Markovian dynamics (where quantum correlations in the environmental mode are long
lived) to non-Markovian dynamics (where the environment has no memory time) can be
explored experimentally. To be of more scientific value, it will be important to make the
system more complex than can be simulated with classical computational resources. In
this way, energy transfer dynamics can be controllably studied in a system which cannot be
simulated by other means, potentially leading to new insights. This is primarily accomplished
by adding more ions and more vibrational modes. Extending the simulation to include extra
vibrational modes involves adding one additional localized bichromatic laser beam per mode,
generating the appropriate vibrational couplings. With more ions, it may be possible to new
qualitative effects such as “quantum ratcheting,” in which the energy only flows in one
direction along the ion string [47, 29]. We believe it will be possible for our simulation to
approach the limits of classical supercomputers with reasonable experimental improvements.
For instance, a five site model where each site is coupled to two harmonic modes may already
be beyond classical resources. If each of the harmonic modes is thermalized to a mean
thermal occupation n̄ ∼ 5, then a Hilbert space of about 15 states is required to simulate
each harmonic oscillator. In that case, the Hilbert space required to simulate the entire
system is 25 × 1510 ≈ 2 × 1013. By incrementally increasing the simulation complexity,
and verifying at each level that the experiment performs as expected, it may be possible to
construct a quantum simulator which truly probes previously unknown physics.
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