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Abstract

In ion trapping, obtaining full control over the electrostatic trap potentials is of great

importance. Manipulating the shape of the potential allows to control ion positions,

trapping frequencies and trap depths. Shuttling ions requires all these elements and is a

big challenge towards the realization of a large-scale planar ion trap quantum informa-

tion processor [1]. However, planar trap geometries impose rather difficult electrostatic

problems and Laplace’s equation cannot be solved analytically.

In this thesis, we outline the theoretical prerequisites for simulating a planar segmented

trap with the boundary element method [2]. We describe a method to gain full control

over the harmonic trap potential. We do this by expanding the electrostatic potential in

a basis of spherical harmonics, and relating the multipole coefficients of the expansion

to the voltages that are applied to the dc trap electrodes. We explain an algorithm

that allows for the calculation of the voltages that will trap the ion at distinct positions

along the axis of trapping. By using the pseudopotential approximation, we analyze

the trapping frequencies and trapping depths of the resulting secular potentials [3, 4].

We illustrate how ions can be shuttled by slowly varying the dc voltages and hence

shifting the minimum of the dc potential. We analyze the trapping parameters for all

positions during transport and elucidate the effect of motional heating during transport

[5, 6]. We expand our algorithm to the case of trapping multiple ions and discuss

the example of the trapping and successive shuttling of two ions. We describe an

experimental setup for trapping ions and outline the principles of experimental control

of dc and radio frequency trapping voltages.
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1. Introduction

The invention of the transistor at Bell Labs in 1947 was certainly one of the most

ground-breaking efforts that was made in the 20th century. Back then, transistors were

several centimeters in size, and only controllable in a lab environment. Since these

early stages, continuous improvements of the technology took place, leading to the

formation of the semiconductor industry and paving the way for a world of personal

computer ubiquity. In 1965 Moore stated a law, that the number of transistors built

in a processor would double every 18 months. Most surprisingly, almost 50 years later,

this prediction still holds. Modern photolithographic fabrication techniques allow for

reducing the feature size down to 50 nm. Diffraction effects limit the optical resolution

and hence the minimum feature size that can be achieved with current fabrication

methods. In addition, by reducing the size of elements on an integrated circuit and

bringing individual transistors close to the size of an atom, quantum mechanical effects

can not longer be neglected. Following Moore’s law, the limits of classical computation

could be reached within the next few decades.

On the other hand, quantum mechanical effects that spoil classical computation could be

of great use when exploiting it for information processing purposes. Richard Feynman

published an article in 1982 where he discussed the difficulty of simulating quantum

mechanical systems with classical computers and suggested using quantum mechanics

itself for simulating it, stating “... Let the computer itself be built of quantum mechanical

elements which obey quantum mechanical laws”[7]. In the same paper, Feynman also

first used the nowadays ubiquitous term quantum computer to describe such a machine.

Besides simulating quantum physical systems, certain problems in computer science

are assumed to have much lower computational complexity when running quantum

algorithms on quantum computers, i.e. these problems can be solved in much less time.

For instance, classical factorization of primes is assumed to be NP hard (i.e. there exists

a solution but it is hard to calculate). For n-bit integers, classical algorithms typically

scale exponentially in time with n. Most classical cryptographic systems, e.g. RSA,

are based on this almost-impossibility of decomposing any large integer into primes.

In 1994, Peter Shor proposed a quantum algorithm (know as Shor’s algorithm) that

allows the ability to solve this problem with O(log(n)3), i.e. running polynomially in

time and yielding an exponential speed-up compared to the classical algorithm [8].

Other examples of quantum algorithms that are faster than their classical counterparts

1
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Figure 1.1. – Representation of a classical bit using TTL high and low-pulses (a) and depiction of a
excited and ground state of a qubit on a Bloch-sphere (b), and a superposition of ground- and excited
state lying on the equatorial plane (c).

are the Deutsch-Josza- and Grover’s search algorithm that provide an exponential and

quadratic speed-up, respectively [9, 10].

Exploiting quantum mechanics for information processing requires sophisticated ma-

nipulation and readout methods of single quantum mechanical systems. Control over

such systems became available in the late 70’s and early 80’s by isolating single atoms

or photons. However, performing experiments that resolve quantum mechanical effects

are technically demanding and can only be achieved in well-controlled laboratory envi-

ronments. Cryogenic temperatures or ultra-high vacuum systems are often considered

as a prerequisite.

Quantum Mechanics and Quantum Bits

In classical information processing, information typically is encoded in binary form as

bits. They can either take values 0 or 1 and are represented in the transistor-transistor

logic (TTL) as high- or low-voltage signals of 0 V and 5 V, respectively. Information

processing is achieved by manipulating the TTL voltages using logical gates that can be

realized by transistors. It can be shown that all logical operations can be represented

by one- and two-bit logical gates. One bit gates are the identity operation that does

not alter the bit, and the NOT gate, which inverts the bit from 0 to 1 and 1 to 0

respectively. For two-bit operations it can be shown that the NAND gate is a universal

gate. In quantum computing, information will not longer be represented as bits but as

quantum bits (qubits) that take values |0〉 and |1〉. The states of the qubit is usually

represented by the ground- and excited state of a two-level quantum mechanical system

and can be illustrated on the Bloch-sphere, see Fig. 1.1 [11]. The exited state is depicted

as a vector pointing on the north pole of the sphere and the ground state vice versa.

Quantum mechanics allows the qubit to not only remain in either states |0〉 or |1〉, but
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form a superposition of both, i.e. [11]

|Ψ〉 = cos(Θ) |0〉+ sin(Θ)eiφ |1〉 , (1.1)

where Θ and φ are the polar and azimuthal angles of the state vector on the Bloch

sphere. For Θ = π/2, this superposition state lies in the equatorial plane and perform-

ing a quantum mechanical measurement would map it either to the excited or ground

state with both probabilities being one half. The possibility of forming arbitrary super-

positions between states is an underlying requirement of many quantum information

processing (QIP) and communication protocols. Further, the creation of entangled

states is a major criterion for most QIP applications. An example of an entangled state

is the Bell-state

|Φ〉 =
1

2
(|00〉+ |11〉) (1.2)

where |00〉 and |11〉 denote the tensor products |0〉 ⊗ |0〉 and |1〉 ⊗ |1〉, respectively.

Entangled states have some remarkable quantum mechanical properties and implica-

tions on the non-classicality of quantum mechanical correlations. If an entangled state

is shared between two space-time separated locations A and B and two independent

measurements are carried out, quantum mechanics predicts strong correlations between

the outcomes of the measurements depending on the choice of measurements bases at A

and B. Also, it can be shown that entangled states maximally violate Bell’s inequality

[12]. Control and generation of entangled states is the most essential prerequisite for

the realization of superdense coding [13], quantum teleportation [14, 15] and quantum

cryptography [16].

Ions as Qubits

Experimental realizations of quantum mechanical two-level systems are found in solid-

state physics (superconducting qubits [18], semiconductor quantum dots [19, 20]), atomic-

and molecular optics (trapped ions [17], trapped neutral atoms [21, 22] and Rydberg

atoms [23, 24]) and NMR (nuclear magnetic resonance), where a rudimentary version

of Shor’s algorithm has been used to factor 15 [25]. In the last few decades it turned

out that trapped ions are a promising candidate for performing quantum computation

operations. They exhibit well defined energy level structure, coherence times many hun-

dred times larger than typical gate operation times of 0.5–500 µs and allow for almost

complete fulfillment of the DiVincenzo-criteria [17, 26]. Over 50 years of research in

the field of trapping of charged particles with the linear Paul traps and Penning traps

and the availability of ultrastable lasers allows for easy access to these well understood

systems. Trapping ions with linear Paul traps recently allowed for sophisticated quan-

tum mechanical experiments such as the creation of a 14-particle GHZ state [27], the

realization of a quantum Toffoli gate [28] and deterministic quantum teleportation [14].
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Figure 1.2. – Energy levels and possible laser-driven transitions of a 40Ca+ ion, omitting Zeeman
splittings. The qubit is formed by the S1/2 and D5/2 states, providing an excited state lifetime of up
to 1.2 seconds. After [17].

Two generic types of ionic qubits are availabe: optical qubits (e.g. 40Ca+), where the

qubit transition is formed by the electronic ground state and an excited metastable state

and radio frequency qubits (e.g. 9Be+), where the two-level system is found within the

Zeeman- or hyperfine-splitting manifolds of the ion (also called clock states).

For optical qubits, excited state lifetimes (T1) of one second were found for 40Ca+ [29],

while the decoherence time T2 is mostly limited by magnetic field noise and typically

ranges in the order of a few milliseconds [17]. Radio frequency qubits, on the other

hand, are so long-lived that T1 times are much larger than any timescales that would

limit quantum logical operations [30]. For 9Be+, decoherence times T2 of 14.7 s were

observed for a magnetic-field insensitive clock transition without applying spin-echo

techniques [31].

In this work, we will focus on 40Ca+ as an optical qubit. In Fig. 1.2 the electronic energy

levels of 40Ca+ ion are depicted (neglecting the Zeeman splitting sublevels). The qubit

is formed by the S1/2 and D5/2 levels and provides an excited state lifetime of τ = 1.2 s.

Readout of the qubit state is achieved by detection of fluorescence on the S1/2 ↔ P1/2

transition: if the qubit is in the ground state, the 397 nm laser will transfer the ground

state population into the P1/2-state and the fluorescence counts can be detected with

a photomultiplier tube. The excited state will not yield fluorescence due to its long

lifetime. In order to deplete the excited state population and de-excite the qubit,

the D5/2 ↔ P3/2 transition is driven. In order to drive the S1/2 ↔ D5/2 transition,

extremely narrow band lasers with line widths below 200 mHz are used [17]. Achieving

this accuracy requires laser-locking to ultra-high finesse cavities.

Scalability of quantum computation with linear (three-dimensional) Paul traps is lim-
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Memory zone

Figure 1.3. – Wineland’s vision of a surface trap for quantum computing applications. The ions,
denoted by the red dots (not in scale) are trapped at a loading zone, shuttled to logic zones and stored
in memory zones. After [1].

ited in the maximum number of qubits that can be formed and adressed in a linear ion

crystal. This number will typically be at a few tenths of ions [32]. Recently, it was pro-

posed to employ planar segmented microfabricated traps rather than 3D Paul traps for

large-scale quantum computation [1]. Planar segmented traps consist of dc- and radio

frequency electrode arrays that allow for trapping of ions at a certain trapping height

above the electrode plane, see Fig. 1.3. Typical traps will consist of separate zones that

allow for trapping the ions in a loading zone, performing quantum logic operations and

coupling that requires laser access in an interaction zone, and storing them in mem-

ory zones. Planar traps are highly scalable in terms of fabrication. State-of-the-art

semiconductor photolithography methods can be employed to manufacture traps.

Control of Trapping Voltages and Transport of Ions in Segmented traps

In order to confine the ions at certain positions of the trap, an electrostatic potential

giving rise to a minimum at the respective positions has to be formed. The axial position

of the potential minimum is defined by the voltages applied to the set of dc electrodes,

while the vertical and radial confinement is achieved by the radio frequency field. By

slowly varying the dc voltages while keeping the rf potential fixed, the axial position

of the dc potential minimum can be shifted and the ion can be transported. Careful

design of experimental control over the dc voltages is crucial in order to achieve fast

and smooth transport. FPGA-controlled digital-to-analog conversion (DAC) boards

can be used allowing for sweeping voltages in real time and avoiding delays that could

be caused by PCs.
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1. Introduction

In this thesis, the theory of trapping ions with radio frequency traps will be elucidated.

Starting with the discussion of the linear Paul trap, we will introduce the physics of

planar segmented traps by analyzing a charged particle’s equations of motion. We

will explain, how dc voltages giving rise to axial confinement can be estimated. By

expanding the electrostatic potential in spherical harmonics, we will derive a relation

between the multipole coefficients of the trapping potential and the dc voltages. In

order to obtain the electric potential due to complicated planar trap structures, we

will introduce the boundary element method (BEM). The BEM is an alternative to

common numerical methods for calculating partial differential equations as the finite

difference method or finite element method that allows for the accurate estimation of

electric potentials for the application of ion trapping. We will calculate dc voltage

sets that can be used to trap and shuttle ions along the axis of trapping. Important

trapping parameters, such as trapping frequency and trapping depth will be analyzed

during transport. The trapping of two ions will be discussed. A typical experimental

setup allowing for trapping ions on planar traps will be introduced. An experimental

control software will be outlined that allows for communication and calibration of the

DAC board.

6



2. Theory

In this chapter, an introduction to the theory required for understanding the physics

of ion trapping will be given. Starting with the basic principles of confining charged

particles with radio frequency fields, we will outline the pseudo-potential approach and

discuss the simpler cases of the 2D quadrupole mass filter and the linear Paul trap.

Finally, we will explain how planar surface traps can be used to trap ions and how

electrode voltages that give rise to trapping conditions can be calculated.

2.1. Trapping Ions in radio frequency traps

To obtain a basic understanding for trapping ions in rf traps, one can use a counterpart

to this purely electrostatic problem in mechanics: trapping a ball on a saddle surface.

This analogue was proposed by Nobel laureate Wolgang Paul in 1989 and showed as

an experiment during his Nobel lecture [33, 34]. Although we will see that the rotating

saddle-potential does not exactly correspond to the physics of an rf trap, it will capture

the underlying principles in an intuitive way.

2.1.1. A mechanical analogue: Trapping a ball on a rotating saddle

To confine a particle of mass m stably at a point of space, we require a restoring,

i.e. binding force F (cf. Hooke’s law) [34]:

F = −c r, (2.1)

with c being the spring constant, and r the position variable. A conservative force F

can always be written in terms of a scalar potential U :

F = −∇U. (2.2)

Given the force, we can calculate the potential by integrating once:

U(x, y, z) =
c

2

(
αx2 + βy2 + γz2

)
, (2.3)

7
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Figure 2.1. – Illustration of a rotating saddle potential (a), a flapping potential (b) and the pseu-
dopotential corresponding to the flapping potential depicted in a (c). In ion trapping experiments,
oscillating potentials like (b) are used for confining particles. After [33, 34]

where α, β and γ are constants that play the role of c in three spatial directions. In

foresight on the discussion of trapping charged particles in electrostatic potentials, we

can choose

α = −β = 1, γ = 0. (2.4)

With this choice, Eq. (2.5) forms a potential that has the shape of a saddle surface, see

Fig. 2.1a, i.e.

U(x, y) =
c

2

(
x2 − y2

)
. (2.5)

Although potentials of this shape will allow to trap the particle along the x-direction,

there exists no stable minimum and the particle could always escape along the y-

direction. Hence, stable trapping is not possible with these static potentials. However,

as we will show now using the example of a gravitational saddle potential, trapping

becomes feasible when we introduce a time variation.

In a gravitational potential, we can set [34]

c =
mgh0
r20

, (2.6)

and obtain the expression of a gravitational saddle potential,

U(x, y) =
mgh0
2r20

(
x2 − y2

)
, (2.7)

with m the mass of the bead, g the gravity of Earth and h0 and r0 parameters that shape

the curvature of the potential. Imagine one could turn on a little motor that rotates

the saddle with a angular frequency Ω around the z-axis, see Fig. 2.1a. This transforms

the static potential into a time-varying potential that can be described mathematically

8



2.1. Trapping Ions in radio frequency traps

by writing the potential in terms of rotated axes x′, y′

U(x′, y′) =
mgh0
2r20

(
x′2 − y′2

)
. (2.8)

We can express the rotating saddle potential in the laboratory frame by applying the

standard coordinate transformation given by the rotation matrix:(
x′

y′

)
=

(
cos(Ωt) − sin(Ωt)

sin(Ωt) cos(Ωt)

)(
x

y

)
. (2.9)

Plugging this into Eq. (2.8), we obtain [34]:

U(x, y, t) =
mgh0
2r20

[
(x2 − y2) cos(2Ωt)− 2xy sin(2Ωt)

]
. (2.10)

Pictorially one can easily see that a rotation with a frequency Ω prevents the bead from

falling out of the trap. In a simplified picture we can assume that the faster the saddle

rotates, the better the bead is confined within the potential. Concisely, it can be shown

that the ball will only follow stable trajectories on the saddle if the rotation is faster

than a certain threshold value [34] √
2gh0
r20
≤ Ω. (2.11)

Although the rotating-saddle potential illustrates the physics of trapping particles with

rapidly oscillating potentials nicely, potentials in ion trapping experiments are qualita-

tively not exactly of the form presented in Eq. (2.10). We will see that electrostatic

potentials in the center of ions traps are typically of a form [35, 36]

Φ(x, y, t) =
c′

2
(x2 − y2) cos(Ωt), (2.12)

which in a pictorial representation would rather resemble a flapping potential, where

the curvature oscillates with time and the wells of the saddle potential flap like the

wings of a bird [34], see Fig. 2.1b. The constant c′ is dependent on the voltage U that

is applied to the ion trap electrodes and is typically expressed as

c′ =
U

2r20
, (2.13)

where r0 is a length that depends on the geometry of the trap.

To understand mathematically why rapidly oscillating potentials like the rotating-saddle

potential or the flapping-saddle potential can be used to confine particles, we will now

9



2. Theory

introduce the concept of the pseudopotential. The following discussion will mostly stick

to the formulation of the problem as it was carried out in [3] and [4].

2.1.2. Pseudopotential approximation

In the pseudopotential approximation, we introduce the average potential that acts on

a particle in a rapidly oscillating potential as an effective potential. It is calculated by

taking the time-average over one period of the fast oscillation. To analyze the trajectory

of the particles in such potentials, we write down the equations of motion by applying

Newton’s second law of motion and using Eq. (2.2):

F = mr̈ = −∇U(r). (2.14)

We now want to look at a generic type of potential consisting of a stationary and a

time-dependent oscillating part. Assuming the time dependent part oscillates with a

frequency Ω we can write

U(r) = U0(r) + Urf(r) cos(Ωt). (2.15)

In the following, we will assume that the frequency of the oscillating part is much larger

than the inverse time scale of one period of motion T the particle would carry out only

under the influence of U0(r), i.e. Ω � 1/T . Plugging the above equations into each

other, we obtain

mr̈ = −∇ (U0(r) + Urf(r) cos(Ωt))

= −∇U0(r)︸ ︷︷ ︸
≡F0(r)

−∇Urf(r)︸ ︷︷ ︸
≡Frf (r)

cos(Ωt)

= F0(r) + Frf (r) cos(Ωt). (2.16)

From these expressions one can already see that the smooth particle trajectory due to

the force F0(r) will be modulated by an oscillating force Frf at frequency Ω. Hence, we

can write the total trajectory r(t) as a sum of a smooth part R(t) and rapidly oscillating

part ξ(t):

r(t) = R(t) + ξ(t), (2.17)

Typically, the amplitude of these oscillations ξ will be much smaller then the smooth

part of the trajectory R, i.e. |ξ| � |R|. We now expand the forces F0(r) and Frf (r) in

a Taylor series up to lowest order in ξ:

F0(R + ξ) = F0(R) + ξ · ∇F0(R) + · · ·
Frf (R + ξ) = Frf (R) + ξ · ∇Frf (R) + · · · (2.18)

10



2.1. Trapping Ions in radio frequency traps

Plugging this and Eq. (2.17) into Eq. (2.16) yields

m(R̈(t) + ξ̈(t)) = F0(R) + ξ · ∇F0(R) + [Frf (R) + ξ · ∇Frf (R)] cos(Ωt). (2.19)

Remembering that the amplitude of the oscillations ξ are much smaller than R, we can

omit terms that contain this factor. On the other hand, contributions from the smooth

part of the equation of motion cancel out, i.e. F0 = mR̈(t). We find that the equation

of motion for the oscillating part of the trajectory is given approximately by

mξ̈(t) = Frf cos(Ωt). (2.20)

This equation can be solved by integrating twice. Its solution reads

ξ(t) = − Frf

mΩ2
cos(Ωt). (2.21)

To obtain an expression for a time-averaged pseudopotential, we now plug Eq. (2.21)

into Eq. (2.19) and take the time average over one period 2π/Ω. To this end we notice

that terms containing a cosine will drop out as their time-average cancels to zero and

only terms with a cosine squared will remain. Namely,

m

R̈(t) +
〈
ξ̈(t)

〉
︸ ︷︷ ︸

=0

 = F0(R) + 〈ξ(t)〉︸ ︷︷ ︸
=0

·∇F0(R) +
〈 [

Frf (R) + ξ(t) · ∇Frf (R)
]

cos(Ωt)
〉

= F0(R)− 〈cos2(Ωt)〉
mΩ2

Frf · ∇Frf .

Since F is a conservative force (i.e. it is curl-less) we can now employ a identity from

vector calculus

1

2
∇ (F · F) = F× (∇× F) + (F · ∇)F = (F · ∇)F. (2.22)

Together with evaluating the time average over the squared cosine 〈cos2(Ωt)〉 = 1/2 it

directly follows that

mR̈(t) = F0(R)− 1

4mΩ2
∇(Frf )

2. (2.23)

This is the force that acts on a particle in a rapidly oscillating potential on time average

over one period of the fast oscillation. We call this force the secular force,

Fsec = mR̈ = −∇
(
U0 +

1

4mΩ2
(Frf )

2

)
. (2.24)

11



2. Theory

with the corresponding secular potential Usec

Usec = U0 +
1

4mΩ2
(Frf )

2. (2.25)

The second term of the above equation is called pseudopotential Ups,

Ups =
1

4mΩ2
(Frf )

2. (2.26)

This means the pseudopotential is proportional to the magnitude of the oscillating force

Frf . Note that in the literature, the pseudopotential is also known as ponderomotive

potential.

To summarize, we analyzed the equations of motion for a particle under the influence

of the sum of a stationary and rapidly oscillating potential. We expanded the corre-

sponding forces in a Taylor series and time-averaged the equation of motion over one

period of the fast oscillation. We found out, that on time average, the secular poten-

tial can be written as a sum of the stationary potential and the pseudopotential. The

pseudopotential is proportional to the square of the magnitude of the oscillating part

of the potential.

Note that the pseudopotential approximation only holds if the parameters Ω, m, r0
etc. fullfill certain conditions and the particle’s trajectories are bound, i.e. Eq. (2.11).

During the discussion of the stability regions of the quadrupole mass filter (section

2.1.3) we will derive corresponding relations for trapping ions.

Electric fields

The force acting on charged particles in electric fields is given by the product of the

elementary charge and the electric field, i.e. F = qE. We can define a scalar electric

potential analogously to Eq. (2.2), namely

E = −∇Φ. (2.27)

The electric potential Φ is related to the potential energy by U = qΦ. In free space,

that is a charge density ρ = 0, any electric potential Φ must fulfill Laplace’s equation:

∆Φ = 0. (2.28)

By applying Laplace’s equation to the solution we obtained by integration (i.e. Eq. (2.5))

we find that

α + β + γ = 0, (2.29)

which directly motivates the choice of Eq. (2.4).

12



2.1. Trapping Ions in radio frequency traps

Given a rapidly oscillating electric potential, the electric pseudopotential is given anal-

ogously to Eq. (2.26) by

Ups =
q2

4mΩ2
(Erf )

2, (2.30)

i.e. it is related to the squared absolute value of the rf electric field. In combination

with a static, i.e. dc potential Φdc, the total (i.e. secular) potential reads

Usec = qΦdc +
q2

4mΩ2
(Erf )

2. (2.31)

This is an important result. As we will see later, trapping frequencies will relate in-

versely to Ω due to the 1/Ω2 coefficient.

As an example, we can now calculate the pseudopotential of the flapping saddle poten-

tial Eq. (2.12):

Ups =
q2U2

4mr40Ω
2
(x2 + y2). (2.32)

By calculating the square of the gradient of the flapping potential, we obtain a har-

monic potential well that provides a stable minimum and trapping along both x and y

directions.

Using this result, we will now discuss the potential and the equations of motion in

quadrupole mass filter and a linear Paul trap [35]. We will make the transition to

planar surface traps and use the pseudopotential approximation to find the trapping

frequencies and trapping depths of quadrupolar potentials.

2.1.3. The 2D quadrupole trap

We start the discussion of the different ion trap configurations with the most simple one,

the 2D quadrupolar trap (also known as quadrupole mass filter). The 2D quadrupole

trap consists of four hyperbolically-shaped electrodes that are aligned around the trap-

ping axis, see Fig. 2.2. Unlike the 3D Paul trap that will be discussed in the next section,

the quadrupole mass filter does not allow trapping in all three spacial directions. The

ion will not be confined along the z-axis and can move freely in this direction, i.e the

amplitudes are only bound along the x- and y-directions.

By a applying a voltage U0 to two oppositely mounted electrodes and a voltage −U0 to

the two remaining electrodes, we can create a potential that is given by [35]:

Φ(x, y) = U0
x2 − y2

2r20
. (2.33)
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y

z
x

Figure 2.2. – The quadrupole mass filter. Applying a positive voltage U0 to two opposite electrodes
and a negative voltage −U0 to the remaining two electrodes yields a 2D quadrupole potential given
by Eq. (2.35). The dot in the center of the trap corresponds to the axis on which ions can be trapped
[35].

Setting U0

U0 = U − V cos(Ωt), (2.34)

i.e. applying a radio frequency voltage V driven at frequency Ω with a constant dc offset

U to the electrodes, creates an electric potential of the form of the flapping potential

depicted in Fig. 2.1b:

Φ(x, y) = (U − V cos(Ωt))
x2 − y2

2r20
. (2.35)

In theory, hyperbolical electrodes are required to yield the exact quadrupole poten-

tial given in Eq. (2.33). However, real setups often incorporate cylindrically shaped

electrodes (ciruclar rods) as they are easier to fabricate and provide an adequate ap-

proximation to hyperbolical shapes.

Equations of motion: Mathieu equations

Although the pseudopotential helps us to obtain a good physical understanding of a

time-varying potential, it is only valid if certain approximations that were made to

derive Eq. (2.31) hold. For analyzing the equations of motion of charged particles

in a quadrupole field, it is better to calculate the trajectories with the actual non-

approximated potentials, i.e. Eq. (2.35).

To this end, we just apply again Newton’s second law of motion, i.e.

F = m a = m r̈ = qE = −∇Φ, (2.36)

14



2.1. Trapping Ions in radio frequency traps

or writing the vector components explicitely:

ẍ = − q

m

∂

∂x
Φ, ÿ = − q

m

∂

∂y
Φ, z̈ = − q

m

∂

∂z
Φ. (2.37)

In these expressions q is the elementary charge and m the mass of the ion. Inserting

Eq. (2.35) into Eq. (2.37) yields [35]

ẍ+
q

m r0
(U − V cos(Ωt))x = 0, (2.38)

ÿ − q

m r0
(U − V cos(Ωt)) y = 0, (2.39)

z̈ = 0. (2.40)

The last expression z̈ = 0 implies that there is no force acting on the ion along the

trapping axis. Therefore we can neither trap it nor manipulate its velocity along this

direction. Substituting

ax = ay =
4qU

mr20Ω
2
,

qx = −qy =
2qV

mr20Ω
2
, (2.41)

Ωt = 2ξ,

transforms Eq. (2.38) and Eq. (2.39) into the canonical Mathieu differential equation

[2, 35, 36]:
d2u

dξ2
+ (au − 2qu cos(2ξ))u = 0, u = x, y. (2.42)

Solutions to Mathieu’s differential equation can be found in mathematical textbooks

(e.g. [37]). Stable particle trajectories inside the trap only exist for certain values of au
and qu. Namely, setting βu =

√
au + q2u/2, stability regions are given within 0 ≤ βu ≤ 1.

In terms of the parameters a and q, stable particle trajectories in the stability diagram

can be found within the limit a, q2 � 1. Typical parameters for which these conditions

are fullfilled are U = 10 V, V = 800 V and Ω/2π = 5 MHz, for which a = 9.7054×10−4

and q2 = 0.015. In this regime, the solution for Mathieu’s differential equation in first

order simplifies to [2]

u(t) ≈ u(0)(t) = u0 cos

(
βuΩt

2

)(
1− qu

2
cos(Ωt)

)
, u = x, y. (2.43)

Eq. (2.43) corresponds to a trajectory that is oscillating at the secular frequency

ωu = βuΩ/2 and is superimposed by a high-frequent oscillation cos (Ωt) called mi-

cromotion. A trajectory along the x-axis is plotted in Fig. 2.3a and compared against
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Figure 2.3. – A x-axis trajectory of a 40Ca+ ion passing a quadrupole mass filter (a) and zoom into
the first period (b). The red dots show an numerical solution obtained by applying a Runge-Kutta
type integration. The blue curve is a plot of Eq. (2.43). The inset in (b) displays the difference
∆x(t) = |x(t)−x(0)(t)| between the integration and the first-order approximation. Typical parameters
of U = 10 V, V = 800 V, r0 = 0.01 m and Ω/2π = 5 MHz together with an initial condition
x(0) = (1− qu/2) were used in order to obtain these plots.

an explicit solution found by a Runge-Kutta based numerical integration with MAT-

LAB (differential equation solver ode45). The inset displays the absolute value of the

error between those solutions. It shows that the first-order solution provides an excel-

lent approximation in the a, q2 � 1 regime, exhibiting a maximum error of < 0.1%. As

discussed before, Fig. 2.3a is strongly dominated by secular motion, with a negligible

contribution due to micromotion. Micromotion is only visible by a zoom into the first

period as illustrated in Fig. 2.3b. The amplitude of the secular motion u0 depends only

on the boundary condition imposed to Eq. (2.42), i.e. the displacement of the ion from

the rf potential minimum. The higher the initial velocity (i.e. the energy) of the ion

entering the trap, the larger the displacement (and hence the oscillation amplitude) will

be. Typically, the secular motion amplitude of ions cooled close to the Doppler limit can

be estimated to ≈ 100 nm. Note, that the amplitude of the micromotion um will always

be a factor qu/2 smaller than the amplitude of the secular motion, i.e. um = qu/2 · u0
(see Eq. (2.43)).

By looking at the above definition for the stability region, it can be easily seen why

the setup discussed in this section is called quadrupole mass filter. For the x-axis, it

translates to

0 ≤

√
4qU

mr20Ω
2

+

(
2qV

mr20Ω
2

)2

≤ 1. (2.44)

This condition gives an upper and lower bound for the ratio q/m: For given U and V ,

only charged particles fulfilling the above statement will stay on a stable trajectory and
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2.1. Trapping Ions in radio frequency traps
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Figure 2.4. – Three dimensional sketch of a segmented rf Paul trap. Red dots sketch three ions
trapped along the trapping axis (not to scale). In order to create confinement along the x and y
directions, a rf voltage is applied to the black shaded rods. The gray rods allow trapping along z
and are segmented into three parts; the outer segments are the positive dc electrodes, while the inner
segments are kept at negative dc voltages. The diagonal distance between two rods is 2r0 with typical
dimensions of r0 = 1 mm. After [36].

can pass the trap; all other particles will not be bound in the trap and will hence be

filtered out. Scanning U and V allows for detection for particles. Applications of the

quadrupole mass filter can be found in analytical chemistry where it is an inherent part

of modern mass spectrometers.

2.1.4. Linear Paul trap

To achieve trapping, potentials allowing for particle confinement along all three spatial

directions are required. One can generate such a potential by applying dc and rf voltages

to a 3D electrode configuration similar to the quadrupole mass filter, see Fig. 2.4 [38].

This device is called linear Paul trap and typically consists of four intersected cylindri-

cal electrodes. Whereas the quadrupole mass filter only generated a two-dimensional

quadrupole potential, the linear Paul trap also allows for confinement of particles along

the trapping axis (z). This is achieved by applying a constant dc voltage to two diago-

nal rods. As in the quadrupole mass filter, the time varying rf potential due to such a

configuration near the center of the trap is given by (in a lowest-order approximation)

Φrf = V cos(Ωt)

(
x2 − y2

r20

)
, (2.45)

where V is the rf amplitude, Ω the rf drive frequency and 2r0 the diagonal distance

between two rods. In Fig. 2.4, the rf is connected to the black shaded electrodes. As

the shape of the rods is not hyperbolical, one cannot find an exact analytic expression

for the dc potential. An approximation for regions close to the trapping center yields
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2. Theory

[38, 39]

Φdc = κU

(
2z2 − x2 − y2

2z20

)
, (2.46)

where U is the dc voltage and κ and z0 are empirically determined parameters that

take the trap geometry (i.e. the cylindrical shape of the electrodes) into account. The

total potential including static and time varying contributions then reads

Φ = V cos(Ωt)

(
x2 − y2

r20

)
+ κU

(
2z2 − x2 − y2

2z20

)
, (2.47)

with a corresponding secular potential (i.e the sum of the static potential and pseu-

dopotential defined in Eq. (2.31))

Usec = q
κU

z20
z2 +

(
q2V 2

4mΩ2r40
− q κU

2z20

)
(x2 + y2). (2.48)

Equations of motion and micromotion compensation

In order to obtain the trajectories for trapped ions in linear Paul traps, we perform

similar substitutions as in the case of the 2D quadrupole trap, i.e.

ax = ay = −1

2
az =

4qκU

2mz20Ω2
, (2.49)

qx = −qy =
2qV

mr20Ω
2
, (2.50)

qz = 0, (2.51)

Ωt = 2ξ. (2.52)

This transforms the equations of motion into the Mathieu form. The corresponding

solutions yield the trajectories of motions of particles along x,y and z and are given (in

the lowest-order approximation) by

u(t) = u0 cos(ωut)
(

1− qu
2

cos(Ωt)
)
, u = x, y, z, (2.53)

where ωu = βuΩ/2 =
√
au + q2u/2 Ω/2. We now analyze the ion trajectory along the

trapping axis (z) explicitely: Since the rf field does not act along the trapping axis,

i.e. qz = 0 and

z(t) = z0 cos(ωzt). (2.54)

This motion only consists of harmonic oscillations at the secular frequency ωz and is not

influenced by micromotion. The average kinetic energy of this motion over one period
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2.1. Trapping Ions in radio frequency traps

of the secular motion is given by [40]

Ekin,z =
1

2
m〈ż2〉 =

1

4
mz20ω

2
z , (2.55)

Assuming that secular motion is mostly thermal, we can relate this kinetic energy to

temperature Tz:
1

2
kBTz =

1

4
mz20ω

2
z , (2.56)

where kB is the Boltzmann constant. Along the radial and vertical axes the kinetic

energy amounts to [40]

Ekin,u =
1

2
m〈u̇2〉 =

1

4
mu20ω

2
u

(
1 +

q2u
q2u + 2au

)
, u = x, y. (2.57)

Apparently, ion micromotion only affects the trajectories along the x and y, but not

z-direction. The first term in the equation above is due to the secular motion, and the

second term due to micromotion. By approximating that q2u � |au|, which is valid for

most ion trapping experiments (see Fig. 2.3), we find

Ekin,u ≈
1

2
mu20ω

2
u, u = x, y. (2.58)

Remarkably, although the amplitude of the micromotion is typically much smaller than

the secular motion, half of the average kinetic energy is due to micromotion. Doppler

cooling, which will be described in the experimental part of this thesis, will allow to

reduce the amplitude of the secular motion u0 significantly and reduce the temperature

Tu down to the Doppler cooling limit.

If the minimum of the rf potential (i.e. the rf null) and the minimum of the dc potential

coincide, the particle trajectories obey Eq. (2.53) and the potential is said to be com-

pensated. However, stray dc electric fields inside the trap can shift the dc potential and

induce a displacement of the dc minimum. An additional type of micromotion results

that cannot be reduced by standard cooling methods. In the following, we will outline

this effect theoretically.

Given a stray electric field, this excess micromotion (nomenclature in accordance with

[40]) shifts the Mathieu equation of motion by a term qEdc · û/m, i.e.

d2u

dξ2
+ (au − 2qu cos(2ξ))u =

qEdc · û
m

, u = x, y, z (2.59)

where û is the unit vector. In the solutions to Eq. (2.59), this offset translates to the
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appearance of an additional micromotion term denoted by us, i.e.

u(t) = (us + u0 cos(ωut))
(

1− qu
2

cos(Ωt)
)
, u = x, y, z, (2.60)

which corresponds to an additional oscillation at frequency Ω with excess micromotion

amplitude us. It is given by

us =
qEdc · û
mω2

u

. (2.61)

Excess micromotion can strongly impair the trapping performance and alter atomic

transition linewidths [40]. Hence, excess micromotion needs to be minimized. By

applying a counteracting electric field Ecomp = −Edc, stray electric fields can be com-

pensated. This procedure is called micromotion compensation and needs to be carried

out experimentally. Experimental control allows for the variation of such electric fields

by manipulating the voltages that are applied to the dc electrodes. By adding a homo-

geneous electric field to the potential and varying its magnitude, the stray electric fields

can be estimated experimentally. In the next section, we will outline how the dc trap-

ping voltages are obtained and how they are related with the values of the compensation

electric field Ex, Ey and Ez.

2.2. Planar segmented microtraps

Both previous types of ion traps discussed incorporate a three dimensional electrode

configuration to achieve trapping. Planar trap geometries involving arrays of segmented

rf- and dc electrodes that all lie on a common plane have major advantages over 3d-traps

in terms of fabrication and scalability [1, 41]. In Wineland’s vision of a quantum charge-

coupled device (QCCD), see Fig. 1.3, ions are trapped in loading zones and then shuttled

to interaction zones where coupling between the ions arranged in strings is mediated via

the Coulomb interaction. Also, qubit state manipulation for quantum logical gates and

fluorescence readout and detection will be carried out at the interaction region. The

quantum information encoded in the internal states of the ions is then stored in the

memory of the QCCD by transporting the ion to memory regions of the planar trap.

Planar traps are typically fabricated in clean-room environments using micro-fabrication

techniques as photolithography and evaporative metal deposition. Common materials

used in the trap fabrication are aluminum oxide, quartz or silicon as substrates and

gold or aluminum for the electrode structures [41, 42, 43].

Most major quantum mechanical and quantum optical experiments could already be

implemented for linear 3D traps. In quantum information processing experiments, fi-

delities of over 99.9% could be achieved [44]. However, the realization of experiments

with such high fidelities in planar surface traps is currently limited by technical difficul-
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Figure 2.5. – Typical planar trap geometry consisting of two radio frequency electrodes (colored
in red) and 22 dc electrodes (colored in white). The direction of a Doppler cooling and fluorescence
detection laser beam is indicated by the blue arrow (a). Contour plot of a pseudopotential due to a
similar geometry as depicted in (a) (omitting the dc electrodes). Rf trap electrodes are symbolized by
the red lines, the ground plane by the gray lines. The plot exhibits a clear potential minimum at a
typical height y above the trap surface, called trapping height, confining an ion indicated by the white
dot along the axis of trapping. Black indicates low energy, yellow (white) indicates is high energy. For
sake of clarity, the pseudopotential is only plotted for values between 0 and 0.2 eV (b). Styled after
[50].

ties: in planar traps, the proximity of the ions to the trapping electrodes (i.e. typically

200-50 µm compared to up to 500 µm for linear traps) can cause several adverse effects

such as surface-induced anomalous heating and charging of the trapping electrodes [45].

Surface-induced heating effects are most likely caused by a contamination of the elec-

trode surfaces. Although this effect has not been fully understood yet, it is believed

that it can be minimized by either cleaning the surfaces or optimizing the materials

involved in the microtrap fabrication. Anomalous heating can complicate laser-cooling

into the ground state required for some gates in quantum information processing [46, 47].

Electrode charging induces stray fields that complicate micromotion compensation sig-

nificantly. It is believed that anomalous heating can be reduced by operating planar

traps under cryogenic conditions [48]. Most recently, an implementation of the Cirac-

Zoller CNOT gate was realized with a fidelity of 91% on a planar surface trap cooled to

a temperature of 4 K [49]. However, as an adverse effect, it is believed that cryogenic

temperatures may increase charging effects.

In planar traps, ions are trapped by arrays of radio frequency and dc electrodes. As

in the linear Paul traps, rf electrodes confine the ions in along the x and y directions,

and dc electrodes then allow for trapping along z. A typical planar trap geometry is

depicted in Fig. 2.5a. The rf potential will be constrained by the geometry of the rf

electrodes (see the red colored area in Fig. 2.5a) and can not changed during trapping.
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By slowly changing the voltages applied to the dc electrodes, the ion’s axial position can

be controlled. The pseudopotential due to a typical rf electrode geometry is depicted

in Fig. 2.5b.

Since planar traps often consist of elaborated geometries and contain a much larger

number of electrodes than what was the case for the linear Paul trap, the calculation of

the electrostatic trapping potentials is complicated significantly and cannot by carried

out analytically. In particular, dc- and rf-potentials that were created by the linear

Paul trap only consisted of one quadrupolar term each, see Eq. (2.47). However, fields

created by planar trap architectures always involve a linear combination of infinitely

many multipoles. In this section, we will elaborate on the equations of motions of

ions trapped in planar segmented geometries. In chapter 3, we will then introduce the

numerical tools required for the calculation of the electrostatic potentials.

2.2.1. Equations of motion

To discuss the equations of motion in a generic planar surface trap, we will extend the

equations of motions found for the linear Paul trap to a general form including potentials

of more multipole terms than given in Eq. (2.46). By applying similar substitutions

as before, we will transform the resulting differential equation into a matrix Mathieu

equation. Coefficients au and qu will no longer be scalars but appear as matrices ã and

q̃.

In the next section we will show that a dc potential solving Laplace’s equation can be

written as approximately (that is the multipole expansion up to second order)

Φdc(x, y, z) = U1

(
x2 − y2

2r20

)
+ U2

(
2z2 − x2 − y2

2r20

)
+U3

(
xy

2r20

)
+ U4

(
zy

2r20

)
+ U5

(
zx

2r20

)
, (2.62)

and for the rf potential similarly,

Φrf(x, y, z, t) =

[
V1

(
x2 − y2

2r20

)
+ V2

(
2z2 − x2 − y2

2r20

)

+V3

(
xy

2r20

)
+ V4

(
zy

2r20

)
+ V5

(
zx

2r20

)]
cos(Ωt), (2.63)

where Ω is the rf drive frequency. The total potential is then given by Φ = Φdc + Φrf .

As for the quadrupole mass filter and the linear rf Paul trap, we now want to find the
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equations of motion due to this potential. Analogously to before, we obtain

ẍ =
q

mr20

[
{(U1 − U2) + (V1 − V2) cos(Ωt)}x

+

{
U3

2
+
V3
2

cos(Ωt)

}
y +

{
U5

2
+
V5
2

cos(Ωt)

}
z

]
, (2.64)

ÿ =
q

mr20

[
− {(U1 + U2) + (V1 + V2) cos(Ωt)} y

+

{
U3

2
+
V3
2

cos(Ωt)

}
x+

{
U4

2
+
V4
2

cos(Ωt)

}
z

]
, (2.65)

and

z̈ =
q

mr20

[
− {2U2 + 2V2 cos(Ωt)} z

+

{
U4

2
+
V4
2

cos(Ωt)

}
y +

{
U5

2
+
V5
2

cos(Ωt)

}
x

]
, (2.66)

or written in matrix form:

d2

dt2

xy
z

 =
q

2mr20

{2(U1 − U2) U3 U5

U3 −2(U1 + U2) U4

U5 U4 4U2


+

2(V1 − V2) V3 V5
V3 −2(V1 + V2) V4
V5 V4 4V2

 cos(Ωt)

}
·

xy
z

 . (2.67)

Substituting Ωt = 2ξ transforms the above into a matrix Mathieu equation:

d2

dξ2
r = {ã+ 2q̃ cos(2ξ)}r, (2.68)

where

ã =

axx axy axz
ayx ayy ayz
azx azy azz

 =
q

mΩ2r20

4(U1 − U2) 2U3 2U5

2U3 −4(U1 + U2) 2U4

2U5 2U4 8U2

 , (2.69)

and

q̃ =

qxx qxy qxz
qyx qyy qyz
qzx qzy qzz

 =
q

mΩ2r20

2(V1 − V2) V3 V5
V3 −2(V1 + V2) V4
V5 V4 4V2

 . (2.70)
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Note that other than for the equations of motion of the linear Paul trap, this differential

equation is coupled, e.g. the motion along the x direction depend on coordinates y and

z. Coupling is caused by the xy, zy and zx parts of the potential solely, i.e. it is

only due to the off-diagonal terms in the matrices ã and q̃. By setting corresponding

multipoles to zero, coupling can be switched off and we obtain the regular Mathieu

equations (i.e. the ones we obtained for the linear Paul trap).

It can be shown that potentials of a form a(x2 − y2) + b(xy) can be rewritten in terms

of rotated axes x′, y′ as c(x′2 − y′2) [45], where the angle of rotation between the tilted

and un-tilted axes can be expressed as

Θ =
1

2
arctan

(
b

2a

)
. (2.71)

In some experimental situations, it can be advantageous to induce a tilted quadrupole

potential, e.g. to improve the efficiency of laser cooling by creating a projection of the

laser along all three axes. Experimentally, this is realized by setting first the multipole

U1 and then tilting the axes by adding a U3 contribution. The angle of tilt is controlled

by the ratio U3/U1.

To conclude this discussion, we note that in order to have full control over the equations

of motions of ions in a planar trap, we must have control over the paramaters Ui and

Vi. Whereas Vi will typically be fixed due to the geometry of the rf electrodes, Ui can

be tuned by changing the voltages that are applied to the dc trapping electrodes. In

the next section, a mathematical relation between the dc trapping voltages and the

coefficients Ui (also known as multipole coefficients) will be given.

2.2.2. Expansion of the potential in spherical harmonics

To obtain a general solution to Laplace’s equation, we will expand the potential in terms

of spherical harmonics. We will show how linear combinations of electrode voltages

relate to the multipole coefficients required for the control of the ion. In the subsequent

chapter, we will explain numerical trap simulations and apply the theoretical derivations

presented in this section.

A general solution of a electric potential in three dimensions can be found by writing

Laplace’s equation in spherical coordinates

∆Φ =
1

r2
∂

∂r

(
r2
∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂ϕ2
= 0, (2.72)
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and using a product ansatz (i.e. seperation of variables)

Φ(r, θ, ϕ) = R(r) Θ(θ)φ(ϕ). (2.73)

Although a direct calculation is not carried out within this context, it can be shown

that solutions of this form can be expanded in terms of spherical harmonics, i.e. the

multipole expansion [51, 52]:

Φ(r, θ, ϕ) =
∞∑
`=0

∑̀
m=−`

(
A`m r

l +B`m r
−l−1)Y`m(θ, ϕ). (2.74)

In the equation above A`m are the expansion coefficients

A`m =

∫
dΩY ∗`m(θ, ϕ) Φ(r, θ, ϕ) (2.75)

and Y`m are the spherical harmonics

Y`m(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
` (cos θ) eimϕ. (2.76)

Pm
` (cos θ) are the associated Legendre polynomials

Pm
` (cos θ) = (−1)m(sin θ)m

dm

d(cos θ)m
(P`(cos θ)) . (2.77)

A`m and B`m are determined by the boundary conditions [51]. We require the potential

of the multipole expansion to be finite at the position of the ion, i.e. at r = 0. However,

at r = 0, the second term in the expansion, i.e. B`mr
−l−1 is diverging. Since this will

lead to discontinuities that are undesirable in this context and we can discard it. Then,

the expansion reads

Φ(r, θ, ϕ) =
∞∑
`=0

∑̀
m=−`

A`m r
l Y`m(θ, ϕ). (2.78)

The spherical harmonics can be expressed in cartesian coordinates by applying the

standard coordinate transformation

x = r sin θ cosϕ,

y = r sin θ sinϕ, (2.79)

z = r cos θ.
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Up to second order they are given by [51]:

` = 0 :

{
Y0,0 =

√
1

4π
(2.80)

` = 1 :



Y1,−1 =

√
3

8π

(x− iy)

r

Y1,0 =

√
1

4π

z

r

Y1,1 = −
√

3

8π

(x+ iy)

r

(2.81)

` = 2 :



Y2,−2 =

√
15

32π

(x− iy)2

r2

Y2,−1 =

√
15

8π

(x− iy)z

r2

Y2,0 =

√
5

16π

(2z2 − x2 − y2)
r2

Y2,1 = −
√

15

8π

(x+ iy)z

r2

Y2,2 =

√
15

32π

(x+ iy)2

r2

(2.82)

The coefficients (e.g.
√

3/8π) will be denoted by N`m. To simplify further calculations,

we now want to rewrite the expansion in spherical harmonics Eq. (2.78) in an one-index

real basis. To this end, we define the mapping

Yj =



rljY`j ,0 if mj = 0

1√
2
rlj
(
(−1)mjY`j ,mj

+ Y`j ,−mj

)
if mj > 0

i√
2
rlj
(
Y`j ,mj

− (−1)mjY`j ,−mj

)
if mj < 0,

(2.83)

with the corresponding complex coefficients

Mj =


A`j ,0 if mj = 0
1√
2

(
(−1)mjA`j ,mj

+ A`j ,−mj

)
if mj > 0

−i√
2

(
A`j ,mj

− (−1)mjA`j ,−m)

)
if mj < 0.

(2.84)

26



2.2. Planar segmented microtraps

In the above equations, `j and mj map the indices j of the single-indexed spherical

harmonics Yj to the indices `,m of the double-index definition given in Eq. (2.80).

They are given by:

`j =

{
0 if j = 0

b
√
j − 1c if j > 0

, (2.85)

where b·c is the floor function and

mj = j − (2`j + 1)− `j (`j − 1) . (2.86)

This assigns each index in the single-index expansion two indices in the two-index

expansion. Up to order 2 (j = 9) this gives:

j

1

2

3

4

5

6

7

8

9


→



`j mj

0 0

1 −1

1 0

1 1

2 −2

2 −1

2 0

2 1

2 2


. (2.87)

With this substitution, we can rewrite Eq. (2.78) as

Φ(x, y, z) =
∞∑
j=1

Mj Yj(x, y, z). (2.88)

If we expand the potential Φ up to order j = 9 (which corresponds to ` = 2 in the

two-index basis) we obtain

Φ(x, y, z) = M1 +M2

(
y

r0

)
+M3

(
z

r0

)
+M4

(
x

r0

)
+M5

(
xy

2r20

)
+M6

(
zy

2r20

)
+M7

(
2z2 − x2 − y2

2r20

)
+M8

(
zx

2r20

)
+M9

(
x2 − y2

2r20

)
+O(r3). (2.89)

In this equation, we normalized the Yj-terms to a dimensionless quantity by dividing

by a constant length r0 (in units of meters). Since the electric potential is measured in
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x

y

z

Figure 2.6. – Equipotential contours (grey) and electric field lines (red) of some components of the
expanded multipole potential. The potential xy/2r20 corresponds to a π/2 = 45◦ counterclockwise
rotated x2 − y2/2r20 potential.

volts, the multipole coefficients are then also defined in the same unit.

Neglecting higher order contributions, Eq. (2.89) describes the potential that charged

particles in a typical planar trap are exposed to. Terms 2–4 describe the dipolar-,

and terms 5–9 describe the quadrupolar parts of the potential. The first term is just

a constant shift of the potential and can be neglected for further considerations. A

pictorial representation of some of these terms and the resulting electric field lines is

given in Fig. 2.6.

We will now show, how the dc trapping voltages are related to a given choice of multipole

coefficients Mi.

2.2.3. Manipulation of the dc potential

A typical trap usually consists of a certain number N of dc electrodes (see e.g. Fig. 2.5a

for a planar trap consisting of 2 rf and 22 dc electrodes). As will be explained in the next

chapter, numerical simulations allow for the obtainment of independent contributions

to the total potential Φi due to the i-th individual electrode. Φi then corresponds to the

potential created by applying 1 V to the i-th electrode and 0 V to all other electrodes.

To get an expression of the potential generated when N different voltages Vi are applied

to N electrodes, we sum up the the product of the potentials due to each individual

28



2.2. Planar segmented microtraps

electrode and the voltage Vi applied to it, i.e. the superposition principle:

Φ =
N∑
i=1

Vi Φi/V. (2.90)

Note, that, in order to multiply Φi by a voltage Vi and obtain a total potential in units

of volts, we have to renormalize the potential due to each electrode into a dimensionless

quantity by dividing it by 1 V (this is justified since Φi corresponds to the potential

found by applying 1 V to electrode i). We can write the potential at electrode i per

1 V as

Φi(x, y, z)/V =
1

V

[
M1,i +M2,i

(
y

r0

)
+M3,i

(
z

r0

)
+M4,i

(
x

r0

)
+M5,i

(
xy

2r20

)
+M6,i

(
zy

2r20

)
+M7,i

(
2z2 − x2 − y2

2r20

)
(2.91)

+M8,i

(
zx

2r20

)
+M9,i

(
x2 − y2

2r20

)
+O(r3)

]
,

=
9∑
j=1

MjiYj +O(r3). (2.92)

In the last equality, the normalization constant 1 V was absorbed into the multipole

coefficients yielding Mji to be in unitless, a choice that will simplify the the matrix

manipulations explained in the next paragraph.

The expansion will usually be carried out around a point (x0, y0, z0) at which we want to

trap. While the rf confinement typically restricts the position of the ion in the vertical

and horizontal plane, i.e. x0 and y0 are fixed, the axial position z0 only depends on the

dc potential and can be chosen freely.

Combining Eq. (2.91) and Eq. (2.90) yields:

Φ =
N∑
i=1

9∑
j=1

Mji Vi Yj. (2.93)

The coefficients can be written in a matrix equation

M̃ V = M, (2.94)

29



2. Theory

where M̃ = {Mji}, V = {Vi} and M = {Mi} (in units of volts). Explicitly,M1

...

M9

 =

M11 . . . M1N

...
. . .

...

M91 . . . M9N

 ·
V1

...

VN

 . (2.95)

The components of the vector M correspond to the total multipole coefficients with

contributions from all N electrodes, whereas each column in the matrix M̃ corresponds

to the multipole coefficients of the potential generated by a single electrode. M̃ entirely

depends on the actual electrode geometry. In order to obtain its elements Mji, a numer-

ical trap simulation yielding the dc potentials generated by each individual electrode

is required. The elements Mji are calculated by expanding the simulated potentials of

each electrode i in the basis of spherical harmonics up to order j = 9.

Typically, we want to find the trapping voltages V for a given choice of M, that means,

V = (M̃)−1M. (2.96)

To calculate V, the multipole coefficients M can be chosen freely such that the resulting

potential yields trapping conditions. For instance, the simplest choice giving rise to

trapping conditions would only contain the coefficient M7 (i.e. 2z2 − x2 − y2), while all

other coefficients are set to zero.

As the multipole coefficient M1 only yields a constant shift of the potential, it will be

neglected and matrix M̃ will be truncated to size 8×N .

Control voltage method

Instead of directly calculating the voltage vector V for a given choice of M, we will now

construct V as a linear combination of so-called control voltage vectors Ci. This is,

V =
9∑
i=2

MiCi. (2.97)

The unitless control voltage vectors Ci are solutions to Eq. (2.95) where one multipole

coefficient Mi is set to 1 V, i.e. Mi = 1 V and all others to zero Mj = 0 V for i 6= j.

For instance, C1 = {C1,i} is given byC1,1

...

C1,N

 =
1

V

M21 . . . M2N

...
. . .

...

M91 . . . M9N


−1

·

1V
...

0

 . (2.98)
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The potential giving rise to the application of a voltage C1 would only consist of a

dipole towards the x-direction, C2 only of a dipole towards the y-direction etc. Given a

choice of the multipole coefficients Mi, the linear combination of Ci allows for arbitrary

shaping of the resulting dc potential.

The control voltage method has a considerable advantage over calculating V once for a

fixed choice of M. For experimental control, we require that the multipole coefficients

can be varied in real time to achieve for instance micromotion compensation. The ma-

trix inversion stated above would have to repeated each time the multipole coefficients

are changed. However, since the number of electrodes N will typically not equal the the

number of multipole coefficients, the problem is ill-defined. To find smallest voltages,

numerical methods have to be applied to solve the problem. Achieving this in real time

could be tedious. With the control voltage method, we instead calculate all matrix

inversions once before starting the experiment. During the experiment, the dc trapping

voltages for a choice of the multipole coefficients Mi can easily be calculated by loading

the control voltage vectors Ci and evaluating Eq. (2.97).

Matrix Regularization

Typically, the number of electrodes will typically exceed the degree of freedom that

is given by the free choice of multipole coefficients M1, . . . ,M9. Hence, the problem is

underdetermined. To obtain voltage vectors V that exhibit minimal voltages, numerical

methods have to be employed. This can be achieved by finding a V that solves Eq. (2.95)

in a least-squares sense, i.e. such that it minimizes the norm

‖M̃V −M‖. (2.99)

However, the voltages V obtained by this method can still be unreasonably large,

exceeding the specifications of digital-to-analog converters. By applying a regularization

of the control voltage vectors, this adverse effect can be bypassed. To this end, we

substract a linear combination of elements of the kernel from V. Mathematically, we

are allowed to do so since M̃ maps elements of its kernel simply to zero, i.e.

Ker(M̃) =
{
x ∈ RN : M̃x = 0

}
. (2.100)

After the the orthonormal basis of the kernel of M̃ is found, the voltage vector V is

regularized by subtracting linear combinations of the kernel from V:

Vr = V −
N∑
i=1

λiKi. (2.101)
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The coefficient λi is chosen such that the norm of the regularized vector ‖Vr‖ is mini-

mized.

2.2.4. Trapping of multiple ions

For experiments requiring the trapping or coupling of of multiple ions, a potential

consisting of multiple wells must be formed. Extending the techniques introduced

in the previous section allows for calculating voltages that give rise to the respective

potential wells. In the following, we will discuss the simplest case of trapping two ions

separated by a distance d.

We start by generating a multipole coefficient matrix M̃ (1) for the position of the first

ion, i.e. (x, y, z1). Repeating this for the position of the second ion, (x, y, z1 + d = z2),

we obtain a second matrix denoted by M̃ (2). Combining both matrices yields a system

of equations 

M
(1)
1
...

M
(1)
9

M
(2)
1
...

M
(2)
9


=



M
(1)
11 . . . M

(1)
1N

...
. . .

...

M
(1)
91 . . . M

(1)
9N

M
(2)
11 . . . M

(2)
1N

...
. . .

...

M
(2)
91 . . . M

(2)
9N


·

V1
...

VN

 , (2.102)

where M
(1)
i and M

(2)
i are the total multipole coefficients at positions z1 and z2 with

contributions from all N electrodes. The individual contributions to the potential

wells confining ions 1 and 2 can be shaped by manipulating both respective multipole

coefficient vectors independently. Eq. (2.102) is solved analogously in terms of control

voltage vectors. Note, that by combining M̃ (1) and M̃ (2), the matrix inversion problem

has become in a sense less ill-defined. This method could be extended for trapping n

ions until all degrees of freedom are filled and n× 9 > N .

2.2.5. Renaming the multipole coefficients

For experimental convenience, we will now rename, reorder and renormalize the multi-

pole coefficients Mi in accordance with other textbooks ([35, 36]) by making following
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substitution: 

M1

M2/r0
M3/r0
M4/r0
M5/r

2
0

M6/r
2
0

M7/r
2
0

M8/r
2
0

M9/r
2
0


→



C

−Ey
−Ez
−Ex
U3

U4

U2

U5

U1


. (2.103)

The potential up to second order then reads

Φ(x, y, z) = C + Ex(−x) + Ey(−y) + Ez(−z)

+U1

(
x2 − y2

2

)
+ U2

(
2z2 − x2 − y2

2

)
+U3

(xy
2

)
+ U4

(yz
2

)
+ U5

(xz
2

)
+O(r3).

This resembles the form given in the discussion of the equations of motion in a planar

surface trap. Setting e.g. r0 = 1 mm, Ex, Ey and Ez are now given in units of V/mm

(i.e. the unit of the electric field) and U1, . . . , U5 in units V/mm2. During trapping, Ex,

Ey and Ez may be varied to achieve micromotion compensation (see section 2.1.4). In

subsequent parts of this text, we will stick to this notation.

2.2.6. Ion transport

For applications in quantum information processing, the shuttling of ions will play an

important role towards the realization of large-scale qubit arrays. The number of lasers

that interact with the ionic qubits may be limited to certain positions along the trap.

In order to move the ions to the respective zones, the dc electrode voltages can be

varied in order to displace the corresponding potential minimum along the trapping

axis. Voltages that create confinement at an axial position z+ z′ are obtained similarly

as before by expanding the potential Φ at the point (x, y, z+z′) in spherical harmonics.

To shuttle an ion from position z to z′ the calculation is carried out repeatedly for a

given number of positions between z and z′, i.e. at z + n · zstep for n = 1, 2, 3, . . . . In

general, zstep will not be constant but depend on a transport function which relates the

axial position of the ion to the time during transport. We will see, that there exist

speed limitations for ion shuttling. By choosing appropriate transport functions, the

minimum transport times can be reduced.
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Figure 2.7. – Logarithmic plot of |Ξ̃(t0)/ωz|2 (blue curve) and its envelope
∣∣4/(1− (2ωzt0/π)2)

∣∣2
(red curve) (a). Minimal transport tiem 2t0 against transport distance d, plotted for various choices
of the maximal motional quanta n that are allowed to be transferred to the ion during transport (b).

Speed limitations of single ion transport

The quantum gates used for quantum information processing (QIP) often require ions

that are cooled close to the ground state. However, during ion transport, ions may

suffer from heating which is dominated by two distinct effects:

1. motional quanta are transferred to the ions because the dc potential well is shifted

too fast and the ion can not follow the potential minimum [5, 6],

2. trap surface induced heating (anomalous heating).

In this section, we will explain how the former effect can be minimized by shifting the

dc potential in the adiabatic limit with near-optimal transport functions. Results will

be compared to transport in the non-adiabatic regime.

Anomalous heating can not be minimized easily. It affects complex algorithms involving

the coupling, splitting and shuttling of ions via complicated trap structures. Such

algorithms often involve recooling (e.g. achieved by sympathetic cooling [53, 54]) after

transport, which may increase the minimum time required for qubit logical operations

significantly.

For a near-adiabatic transport, i.e. on a timescale T � ω−1z , the average number of

motional quanta n transferred to an ion can be expressed as [5]

n(t0) =
md2ωz

8~
|Ξ̃(t0)/ωz|2, (2.104)
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where m is the mass of the ion, d the distance of transport, ωz the axial secular frequency

and ~ the reduced Planck’s constant. Ξ̃(t0) depends on the transport function and is

called energy transfer function. For a sinusodial transport function, i.e.

z(t) = sin(tπ/2t0), (2.105)

where 2t0 is the transport time, Ξ̃(t0) was found to be [5]

Ξ̃(t0) = ωz
2 cos(ωzt0)

1− (2ωzt0/π)2
. (2.106)

We are interested in the minimal time in which we can transport an ion with transferring

less than a certain number of motional quanta n, i.e. the lower bound n(t0) < n. We can

obtain this lower bound by plugging the above into Eq. (2.104) and solving numerically.

For transport of qubits (i.e. quantum information), we ask for the most limiting case

that less than one motional quantum is transferred, i.e. n = 1. For this choice of n,

assuming a sinusoidal transport a calcium ion over a distance of d = 800µm and an

axial trapping frequency of ωz = 2π × 1 MHz, we obtain 2t0 ≈ 95µs. In Fig. 2.7b the

minimal transport time 2t0 is plotted against the transport distance d for various n.

It was reported that transport over the same distance can be achieved much faster by

selecting near-optimal transport functions such as the error function, i.e.

z(t) =
Erf(2t/tp)

Erf(2t0/tp)
, (2.107)

where tp is a parameter chosen such that the energy transfer function decays fast enough

such that the condition n(t0) < n is satisfied for a minimal time. Finding the corre-

sponding energy transfer function and using the same parameters as in the paragraph

above, we can estimate the minimum transport time over 800 µm to ≈ 5µs, which is

more than one magnitude faster than transport with a cosine-type transport function.

From this analysis, we see that the choice of an appropriate transport function is essen-

tial in order to approach the limit of fast near-adiabatic transport. However, without

requiring an adiabatic shift of the dc potential, we can achieve even faster transport

times, i.e. in the non-adiabatic regime [6, 55]. By shifting the potential minimum by

the desired transport distance during exactly one half of a secular motion oscillation

period T = 1/(2fz), heating will be avoided. Limitations will only be due to the secular

frequency ωz and can be estimated to T = 500 ns for ωz = 2π × 1 MHz. Due to lim-

itations of dc voltage supplies (DACs), access to this regime has not been possible so

far. However, recent advances in experimental control electronics have been reported

allowing for voltage update rates of up to 50 MHz [56]. As will be discussed in the ex-

perimental section of this thesis, our experimental setup is not yet capable of achieving
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these high update rates.
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3. Calculating Voltage Trajectories for

Ion Transport

In order to obtain the multipole expansion coefficient matrix M̃ that allows for calcula-

tion of the electrode voltages, one has to first solve Laplace’s equation in the region of

interest. However, typically highly complicated electrode structures make it impossible

to achieve this in an analytical way. Recent work has been done to provide a compu-

tational framework to carry out numerical calculations of electric potentials induced

by ion trap geometries [2]. Solutions to second order differential equations such as the

Laplace’s equation can be found in various ways. Common methods include the finite

difference method (FDM), finite element method (FEM) and boundary element method

(BEM). Of these three methods listed, the finite difference method is the one that can

be implemented most easily. It transforms the differential equation into a difference

equations and allows for translating the problem into solving matrix equations. They

mostly involve block-diagonal matrices that can be solved fairly easily by employing

e.g. LU factorization methods. However, calculations with the finite difference methods

require very fine grid spacings. Typical scales for ion traps range in the size of mil-

limeters. However, as typical transport calculations would require spacings of down to

100-1000 nm, enormous computational resources are required to deal with such large-

scale grids. Finite element methods, on the other hand, solve Laplace’s equations by

using a linear combination of basis functions and transform the differential equation

into a variational equation.

Although all three described methods allow for finding solutions, the boundary element

method has major advantages over the two other ones. Solutions that are found using

FDM or FEM often involve unphysical discontinuities (e.g. at the edges of electrodes).

Discontinuous potentials cannot be used to analyze the ion trajectories and would have

to be smoothened first. Also, since grid spacings of down to 100 nm would hardly

be bearable for e.g. the FDM, obtaining a well-spaced potential grid would have to

involve numerical interpolations in addition. The boundary element method, that will

be presented in this section, features high precision, smooth potentials and sufficient

spatial resolution to calculate potentials for ion transport. Compared to the other

techniques, BEM is mathematically rather advanced and the technical implementation

can be quite demanding.
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3.1. Boundary Element Method

The illustration of this method will mostly follow the discussion in [2]. A concise

mathematical description is given in appendix A.1 [57].

The main idea behind the BEM is to divide the electrode surfaces into triangular

subsections and place surface charges of charge density σi = ∂Φ(xi)/∂n onto them.

This the fundamental difference to other numerical methods for calculating partial

differential equations: with the boundary element method one only needs to discretize

the boundary surfaces (in our case the surfaces of the electrodes) but not the whole

space within the calculation is carried out. This principle reduces the dimensionality

of the problem by one: When simulating a 3D-electrode structure like the linear Paul

trap, only the actual (2D-) electrode surfaces needs to be discretized.

In order to simulate trap geometries and solve Laplace’s equation using the BEM, we

used a software package presented in [2] called bemsolver. Embedded into the CERN-

based data analysis framework ROOT, it provides an efficient and exact implementation

of the boundary element method. ASCII AutoCAD files containing the exact trap

geometries can almost directly be imported into bemsolver and the output data can

conveniently be post-processed using numerical computing environments as MATLAB.

In the following, we will outline how we simulated an ion trap with bemsolver and how

trapping voltages and potentials were obtained in MATLAB post-processing.

Since bemsolver can only deal with electrode surfaces having polygonal shapes with

four corners at maxmimum, the AutoCAD drawing used for the simulation needs to be

adapted. Electrodes are split into adjacent rectangles and curvatures are approximated

by straight lines. After this step, each electrode (consisting of a number of adjacent

polygons) is then placed on distinct AutoCAD layers. Bemsolver then allows for the

interpretation of those AutoCAD layers as electrodes. To start the computation, a three

dimensional grid on which the simulation was carried out has to be defined. Usually,

our simulations covered a grid of size 20 µm × 20 µm × 1280 µm. As preparation for

later ion transport calculations, a high resolution of 1 µm along all axes was required.

In order to minimize computation time, the simulation was split up by dividing the grid

into 64 adjacent subgrids. This was necessary since requiring a high resolution along

the z-axis would have demanded at least 1280 points for this respective axis. However,

bemsolver can only handle cubic grids with equal spacing for all axes. Simulating the

ion trap with a cubic grid of 1280 points for all axes would have then required solving

the potential at 12803 ≈ 2 × 109 points. Compared to 64 calculations that were run

iteratively for 64 subgrids with 20 points each, the single simulation would have taken

≈ 4000 times longer.

For an ion trap consisting of N electrodes, bemsolver solves the potential by setting

each loaded electrode alternately to 1 V and all others to 0 V. Iterating the potential
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Figure 3.1. – Schematic that illustrates the routine carried out for analyzing bemsolver simulation
results with MATLAB and obtaining trapping voltages. Bemsolver returns N three dimensional po-
tential arrays. Each array was calculated by setting the respective electrode to 1 V and all others to
0 V (1). After a trapping position was chosen (2), for each 3D-array a numerical expansion in spher-
ical harmonics is carried out in MATLAB (3). One obtains for each electrode a multipole coefficient
vector with 9 entries (expansion carried out to 9th order). The vectors are combined in a multipole
coefficient matrix (4) and a matrix inversion is carried out (5). With the resulting control voltage
vectors, one calculates the final dc trapping voltages for a given choice of total multipole coefficients
Mi (6 and 7). Finally, the total dc potential can be analyzed by employing the superposition principle
and multiplying each electrode potential with the respective calculated voltage.

calculation N times, one obtains N three dimensional arrays of potentials. As the

superposition principle holds, a general potential can be obtained by multiplying the

individual potentials with the voltage that was applied to the electrode and summing

up all contributions, i.e. Φ =
∑N

i ViΦ
1V
i , where Φ1V

i denotes the potential obtained

by setting electrode i to 1 V and all others to 0 V. After the simulation, the adjacent

grids were joined and post processed with MATLAB, see section 2.2.3. A flowchart

illustrating this algorithm is given in Fig. 3.1.

3.2. Ion Transport

In order to transport an ion from a starting position z to an end position z′, the secular

potential minimum along the z-direction needs to be displaced by manipulating the dc

potential. We will now introduce an ion trap design for which corresponding transport

calculations were carried out.
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3. Calculating Voltage Trajectories for Ion Transport

3.2.1. Transport of a single trapped Ion on a microfabricated

surface trap

The Eurotrap is a monolithic surface trap that was manufactured by Sandia National

Laboratories, see Fig. 3.2 [43]. It contains 42 dc- and 1 rf gold electrodes that are

photolithographically fabricated on a silicon substrate. This trap geometry features

a 100 µm wide slit that allows for loading the trap with calcium atoms from below.

Dc electrodes along the slit allow for variation of the axial potential while a single rf

electrode electrostatically confines the ion radially and vertically (see red colored area

in Fig. 3.2). In order to take into account the thickness of the electrodes close the

the 100 µm wide slit, we extruded the center electrodes (denoted as 41 (CNT) and 42

(CNT)) in the AutoCAD input file by 10 µm in the negative z-direction1.

In Fig. 3.3 the voltages that need to be applied to the dc electrodes 1–20 & 41 and

21–40 & 42 for transporting an ion from z = −640 µm to z = 640 µm are depicted. The

corresponding simulation took three days on a standard single-core desktop computer.

The 3D ribbon plot displays how the voltages need to be changed in order to shuttle

an ion. Notice that the ion transport voltages should change smoothly, since abrupt

voltage jumps could cause problems with the dc voltage source (i.e. the digital-to-analog

converters). In order to obtain these voltages, the multipole coefficient U2, which creates

a confinement along the z-axis, was set to 10 V/mm2 and all others were set to zero. At

ion positions close to the centers of an electrode, the corresponding electrode voltages

have a maximum absolute value. For instance, at z = 0 µm, which is indicated by the

black circle in Fig. 3.2c, electrodes 10 and 30 exhibit maximal negative voltages. The

electrode voltages for trapping in the center are also illustrated in Fig. 3.4a.

Trapping Frequencies

The secular potential (i.e. sum of the static dc potential and the rf-pseudopotential)

formed by applying the voltages shown in Fig. 3.3 to the dc electrodes can be calculated

using the superposition principle. The potential contribution due to each individual

electrode is multiplied by the respective dc voltage that is applied to it. Summing

up all contributions yields the total secular potential. Cuts of the secular potential

at z = 0 µm are depicted in Fig. 3.4c, 3.4d and 3.4e. By analyzing these curves,

important trapping parameters as trapping frequency, trap depth and trapping height

cans be extracted. The trapping height is calculated by finding the minimum of the

potential along the y-direction. It was found to lie at y = 80µm. The trapping depth,

1At a very late stage of the preparation of this manuscript we became aware that this dimension was
wrong by a factor of five. However, timing limitations did not allow to carry out the simulation
again with a corrected extent. Although resulting voltages should allow for trapping, simulated
frequencies may not correspond to measured experimental results.
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Figure 3.2. – Schematic of Sandia National Labs Eurotrap. Top view, showing all electrodes and
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Figure 3.3. – Simulation of voltage trajectories for ion transport. The voltages of the different
electrodes are plotted as ribbons against the axial trapping position. Electrodes 1–20 are depicted in
(a) and 21–40 in (b). A clear periodicity in position vs. electrode number can be observed: when the
ion sits in the the middle of an electrode, the corresponding electrode voltage has a maximal amplitude.
Trajectories (a) and (b) resemble each other to a large extent. This fact exhibits a high trap symmetry
with respect to the axial direction.
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defined as the distance between this minimum and the escape point, was calculated to

be Udep = 260 meV. The trapping frequencies are determined by the curvature of the

potential. In a harmonic approximation, they can be obtained by fitting the potential

to an expression

U ≈ 1

2
kxx

2 +
1

2
kyy

2 +
1

2
kzz

2, (3.1)

where ki are spring constants. The frequency is proportional to the square root of the

spring constant and can be calculated by

fi =
1

2π

√
ki
m
, (3.2)

where m is the mass of the ion. By applying the above in a fit, secular frequencies

of fx = 3.04 MHz, fy = 3.08 MHz and fz = 1.12 MHz could be determined for the

potentials depicted in Fig. 3.4.

The dependency of the secular frequencies on the choice of the multipole coefficient

U2 was investigated. To this end, we assume a secular potential that in a harmonic

approximation consists of a rf potential of form Eq. (3.1) and a dc potential (2z2−x2−
y2)/2, i.e.

Usec ≈
1

2

(
kxx

2 + kyy
2 + kzz

2
)

+ eU2

(
2z2 − x2 − y2

2

)
(3.3)

=
kx − eU2

2
x2 +

kx − eU2

2
y2 +

kx + 2eU2

2
z2. (3.4)

Using Eq. (3.2) one easily arrives at the expression of the secular frequencies depending

on U2:

f ′x,y =
1

2π

√
(fx,y)2 −

eU2

m
, (3.5)

f ′z =
1

2π

√
(fz)2 + 2

eU2

m
. (3.6)

To analyze the quality of the harmonic approximation, the parameter U2 was now varied

and corresponding secular frequencies were obtained with a polynomial fit described in

the paragraph before. Fig. 3.4b shows the three secular frequencies for various values

of U2. The red curves are plots of f ′x,y and f ′z without any fit parameters. They agree

well with an maximum error of 0.16 % with the frequencies found in post-processing.

In order to evaluate the trapping characteristics during the transport of an ion, the

preceding analysis is repeated for various axial ion positions according to the voltage

set presented in Fig. 3.3. The evolution of the secular potential during shuttling an

ion from −490 µm to 490 µm is depicted in Fig. 3.5a and Fig. 3.5b. Fig. 3.5a shows a
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Figure 3.4. – Voltages against electrode number for trapping an ion close to the center of the trap at
axial position z = 0.01µm (a). Secular trapping frequencies for a variation of the multipole coefficient
U2 (b). Resulting axial (c), radial (d) and vertical (e) cuts of the potential when voltages depicted
in (a) are applied. The red dots correspond to the minima that were found during post-processing.
Corresponding to (e), a rf minimum at z = 80µm and a trapping depth of Udep = 260 meV were
found. The rf drive frequency to obtain the simulation data for figures (a)−(e) was chosen to be
Ω/2π = 40 MHz at an rf amplitude of 150 V.

top view on the potential and Fig. 3.5b shows a cut through the z-axis at x = 0. The

position of the ion at each respective position is marked by the white and red circles,

respectively.

The trap depth was analyzed for all axial positions and is plotted in Fig. 3.6a. Fluc-

tuations in the trapping depth lie below 14% over the whole range of transport. In

the main trapping region between ±0.4 mm, they were calculated to range below 4%,

indicating a good trapping stability and a low probability of loosing the ion during

transport.

During ion transport, secular trapping frequencies, i.e. the curvature of the potentials

can vary. These fluctuations lead to an additional heating effect known as parametric

heating [58, 6]. Although a detailed discussion of parametric heating is beyond the

scope of this thesis, we can quantify the frequency fluctuations during transport by ap-
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Figure 3.5. – Evolution of the secular potential during transport of an ion from position z = −490µm
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Figure 3.6. – Trap depths against the axial position (a). The trapping depth is roughly constant
over the whole range of transport. In proximity to the large electrodes, we observe a small decrease in
trapping depth. Secular frequencies vs. axial position (b).

plying a polynomial fit to the secular potential at all transport positions. The obtained

frequencies are plotted against the axial ion position in Fig. 3.6b. As for the trapping

depth, the trapping frequencies only exhibit minor fluctuations throughout the whole

range of transport. They were calculated to be ∆fx = 5% for the radial frequency,

∆fy = 8% for the vertical frequency and ∆fz = 6% for the axial frequency.

3.2.2. Shuttling of two ions

In order to load, couple and readout ions for quantum computing operations, transport

from loading zones to logic zones must be possible while keeping ions stored in memory

zones trapped. Applying the theoretical principles discussed in chapter 2.2.4 to our

post-processing methods outlined above, multi-ion transport is feasible. Trapping two

ions is the simplest case of multi-ion trapping. Rather than expanding the potential

at only one distinct position, we perform a second expansion in spherical harmonics to

obtain the two-ion multipole coefficient matrix, see Eq. (2.102).

For trapping two ions, two additional effects must be taken into account: the electrodes

that achieve trapping of a first ion will influence the trapping potential of the second

ion even if it is far away from the first ion (cross-talk). This is taken care of by the

calculation of the trapping voltages using the multipole coefficient method. Calculating

the trapping voltages independently for trapping an ion at position z and repeating the

calculation for a position z′ and adding the voltage sets would not give rise to trapping

conditions. Moreover, the Coulomb interaction must be taken into account. In order

to quantify the influence of the Coulomb interaction at a distance r between two ions,
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we calculate the frequencies of the eigenmodes of the coupled system. To this end, we

write the classical Hamiltonian consisting of the kinetic energy contributions T and the

potential energy V as

H =
p21
2m

+
p22
2m

+
1

2
mω2

zz
2
1 +

1

2
mω2

zz
2
2 +

1

4πε0

q2

|z1 − z2|
, (3.7)

where pi is the canonical momentum and zi the coordinates of the ions along the trap-

ping axis. Further, m is the mass of the ions, ωz is the axial trapping frequency in a

harmonic approximation, ε0 is the electric constant and q is the elementary charge. The

frequencies of the normal modes can be found by expanding the potential energy V in a

Taylor series up to second order and calculating the Hessian matrix in mass-weightened

coordinates which is defined by [59]

F
(m)
ij =

1

m

(
∂2V

∂zi∂zj

)
ij

. (3.8)

The frequencies of the eigenmodes are then given by the square root of the eigenvectors

of the Hessian matrix

ωi =

√
F̃

(m)
ii , (3.9)

where F̃ (m) denotes the diagonalized Hessian matrix. Explicitly, we obtain

ω1 = ωz, (3.10)

ω2 =

√
w2
z +

4

m

1

4πε0

q2

|z1 − z2|3
. (3.11)

This means, that the first normal mode is just the secular frequency of the corresponding

harmonic potential well. The second normal mode includes the coupling between the

both ions. For distances r = |z1 − z2| which yield the second term in Eq. (3.11) to be

much smaller than the secular frequency ωz, we can perform a Taylor expansion and

approximate ω2 by

ω2 = ωz +
2

mωz

1

4πε0

q2

r3
= ωz + ∆ω. (3.12)

The parameter ∆ω then provides a scale for the coupling between two ions depending on

the inter-ionic distance. For distances r > 100µm, this number is typically much smaller

than the secular trapping frequencies and can be negelected. At r = 100µm we obtain

a coupling of ∆ω = 2π× 158 Hz for an axial trapping frequency of ωz = 2π× 1.1 MHz

(c.f. [60, 61]).

The principle of two-ion transport is illustrated in Fig. 3.7a and 3.7b. In a preparation

transport sequence, an ion was loaded at z = −490 µm and shuttled to z = 490 µm

(see the previous discussion for single-ion shuttling and Fig. 3.5a). Then, while keeping
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Figure 3.7. – Density plot of the secular potential during the transport of an ion from z = −490µm
to z = 0µm while keeping a second ion at a fixed position of z = 490µm. Red indicates high energy,
blue indicates low low energy, the white dots indicate the ion positions (a). Z-axis slice of the potential,
ion positions are indicated by red markers (b).
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the first ion at the same position, a second ion is loaded at z = −490 µm and shuttled

to the center of the trap, see Fig. 3.7a. To avoid losing the second ion, the depth of

the potential well should not reduce when creating a second well. Comparing 3.7b and

3.5b exhibits that the potential well of the first ion is not drastically impaired after

loading a second ion. Transport can be achieved closely to the fixed ion providing a

clear separation of both respective potential wells. At a distance of r = 490µm between

the two ions, the Coulomb coupling corresponding to the previous paragraph is fully

negligible and amounts to only ∆ω = 2π × 1.34 Hz.
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4. Experimental Realization of Ion

Trapping and Transport

Ion trap quantum computing has the advantage of using natural qubits formed by the

electronic states of ions rather than artificially fabricated two-level atoms. However,

manipulation and coherent control over the qubit states requires state-of-the-art ex-

perimental equipment and ultra-stable lasers. Trapping needs to be carried out under

ultra-high vacuum of below 10−10 mbar. Experimental setups need to be designed

carefully allowing baking the vacuum chamber at up to 150◦C. Accessing the qubit

transition is technically demanding and requires laser with mHz-narrow linewidths.

In this chapter the experimental prerequisites for ion trapping will be explained. The ex-

perimental setup, including a ultra-high vacuum chamber, photoionization-, detection-

and Doppler cooling lasers will be discussed. The experimental control of the trap

electrode voltages via a FPGA-based DAC board will be introduced.

4.1. Ion trapping experiments in UHV chambers

In order to create stable trapping conditions, ion traps are placed in ultra-high vacuum

chambers allowing for vacuum pressures of down to 10−12 mbar. In order to reach

pressures of below 10−10 mbar, the vessel needs to be baked for several weeks in an

oven at 150◦C-200◦C. During baking, volatile compounds as hydrocarbons desorb from

the trap and the inner surfaces of the UHV vessel and are pumped out with an vacuum

pump that is attached via an oven outlet.

In our experiment, we used a residual gas analyzer (RGA) to monitor residual volatile

molecules during bakeout. Baking was finished when no more compounds that could

spoil vacuum were detected in the RGA mass spectra. After baking, we detached the

RGA from the chamber and reduced the pressure to 10−11−10−12 mbar using an Varian

Starcell ion pump and a titanium sublimation pump. The pressure is monitored by an

ion gauge, which is attached to one of the vessel feed throughs. Both ion pumps and

gauges have the same basic principle [62]: Electrons are emitted from a high-current

filament (typically 1 mA) and ionize residual molecules or atoms by collisions. The

ion gauge detects the pressure by measuring the current induced by the ion flow. The

51



4. Experimental Realization of Ion Trapping and Transport

same principle is applied in ion pumps, where instead measuring a current, the ions

are directed onto surfaces of the pump where they are chemically bound. Titanium

sublimation pumps evaporate titanium and coat the inner surfaces of the chamber with

a titanium layer. Acting as a getter material, residual gas molecules (mainly H2) are

bound on the surface without requiring ionization.

Before trapping for the first time, the calcium oven was switched on at high currents of

5 A in order to break oxide layers created by the contact of the calcium particles with

air during venting. Pressures will typically rise two orders of magnitude, but converge

back to the initial value after a few hours. After having repeated this process 5-10

times, turning on the oven will not give rise to any more pressure increase and loading

can be achieved without worrying about impairing the vacuum.

Venting under argon reflow

Under certain circumstances, one may want to replace a trap without requiring a baking

time of two weeks. In this case, the vessel can be vented under the reflow of argon,

which is fed into a feed through valve. The presence of argon flowing through the open

chamber should prevent the contamination of the chamber and trap surfaces. After

mounting a new trap, the vessel can be pumped back down using a regular turbo-pump

or RGA. Instead baking the vessel in an oven, the apparatus can be wrapped with

heater tapes to bake it for a short time of e.g. one day while remaining fixed on the

optical table. By applying this technique, we could achieve pressures down to 10−11

mbar after 24 hours of baking.

4.2. Loading and three-step photoionisation of neutral

calcium

In order to trap calcium ions, neutral calcium needs to be evaporated into the chamber

and successively ionized. To this end, crystalline calcium is placed into an evaporative

oven placed below the trap. High currents up to 4-6 A are applied to the oven, heating

the oven walls up and allowing neutral calcium to evaporate. The neutral calcium beam

is then directed into the main vacuum chamber and loaded above the trap through a

100 µm wide slit that crosses our trap, see Fig. 3.2. While feeding the vacuum chamber

with calcium, the photoionization lasers are directed at the trapping height above the

trap surface allowing for excitation of the Ca valence electron beyond the ionization

limit. The photoionization process is carried out in three steps (see Fig. 4.1a): First,

a blue 423 nm laser excites the atoms from the 1S0 electronic ground state to the 1P1

state, following a second red 732 nm laser exciting them to the 1D2 state. In the last
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Figure 4.1. – Level structure of neutral calcium and transitions required for three-step photoionisa-
tion [65] (a). Two-step photoionization with 390 nm UV laser [63] (b).

step, a 832 nm laser is used for exciting the neutral atoms beyond the ionization limit

of 6.1130 eV and creating positively charged 40Ca+ ions.

While loading calcium into the chamber for the first time, only the first step PI laser

(423 nm) is turned on and scanned in a range a few MHz around the transition frequency.

While a 423 nm bandpass-filter reduces the background, a photomultiplier tube allows

for detection of a distinct 1S0 ↔ 1P1 neutral atom fluorescence signal. In order to verify

the second step of the ionization process, the 732 nm laser is then switched on. The

population will then be excited to the 1D2 state and since the light emitted by all other

transitions is blocked by the 423 nm bandpass-filter, a clear dip in the fluorescence peak

is visible.

Three-step Ca-photoionization is advantageous over other methods as two-step PI, see

Fig. 4.1b. Instead using a visible and near-IR laser for exciting from the 1P1 state,

two-step PI uses a strong UV laser with wavelength of 390 nm [63, 64]. It is believed

that the application of high-energetic UV lasers could cause surface-induced charging

effects that may increase the heating rates of trapped ions (also see the discussion of

heating effects in section 2.2).

4.3. Doppler cooling, fuorescence detection and

repumping

In order to confine ions in an electrostatic potential, Doppler cooling must be applied

[66]. Doppler cooling is one of the most basic laser cooling principles utilizing the
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S1/2

P1/2

D3/2

397 nm
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Figure 4.2. – Electronic transitions in ionic calcium required for fluorescence detection and cooling
(397 nm) and repumping to the cooling cycle (866 nm).

Doppler effect: stationary ions will only absorb photons with energies matching the

S1/2 ↔ P1/2 transition depicted in Fig. 4.2. However, if an ion is propagating with a

velocity v towards an oppositely directed laser beam with photon momentum ~k, the

Doppler effect allows the absorption of light that is red-detuned (i.e. lower frequency)

from the resonance frequency of the ion at rest. After absorption, the ion will be slowed

down by ~k/m due to momentum conservation. Spontaneous emission gives rise to the

re-emission of a photon in a random direction inducing a momentum kick in its opposite

direction. On average, contributions due to spontaneous emission are mostly canceled,

only leaving a small net momentum. This is called the Doppler limit characterized by

the energy [66]

kT =
~Γ

2
, (4.1)

where ~ is the reduced Planck’s constant, Γ the linewidth of cooling transition and k

Boltzmann’s constant. For calcium ions with a cooling transition linewidth (397 nm

laser) of Γ ' 2π × 20 MHz, we calculate the Doppler limit to T ' 0.5 mK [67].

For trapping of neutral atoms, Doppler cooling along more than one axis is required.

However, in ion trapping experiments, strong confinement in all spatial directions is

achieved by the electrostatic potential. Cooling ions with one beam is sufficient to

prevent the ions heating up and escaping the trapping potential. However, for efficient

cooling, we require a projection of the cooling laser along all three axes.

Doppler cooling is easily provided by red-detuning the 397 nm detection laser by 5–

100 MHz. In this way, cooling and detection can be carried out with the same laser

beam. A larger detuning of up to 100 MHz is desirable for trapping ions for the first

time. After trapping was successful, the detuning is typically reduced to ≈ 20 MHz to

achieve optimal cooling.
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Fluorescence detection

To utilize calcium ions as natural qubits, internal electronic states can be used as a two-

level system. State readout is easily achieved by continuous excitation of the cooling

transition S1/2 ↔ P1/2. If the qubit is in the ground state, the ground state population

will be excited to the P1/2 state and a light scattering can be recorded. Once in every 15

decays, the population will not decay to the the ground state but rather to the D3/2 state

which has a lifetime τ ≈ 1 s. In order to repump into the fluorescence-excitation cycle,

the ion is exposed to a 866 nm light continuously driving the D3/2 ↔ P1/2 transistion.

While trapping ions, switching off the repumping laser allows to distinguish noise and

random light scatter from the actual fluorescence signal that is collected with the CCD

camera and PMT.

4.4. Laser systems for trapping calcium

Ion trapping experiment requires in ultra-stable lasers. Electrical equipment, conver-

sations, construction work or vibrations caused by closing doors could interfere with

the laser systems. To avoid such perturbations, all laser light in our lab is generated

in a separate laser room and directed via single-mode optical fibers to the individual

experiments. In the following we will briefly describe the laser systems allowing for

photoionisation, doppler cooling and fluorescence detection and repumping. A short

introduction to laser locking and frequency stabilization using the Pound-Drever-Hall

technique will be given.

All lasers in our experimental setup are diode lasers, which have considerable advantages

over solid-state or dye lasers in terms of stability and maintenance effort. Whereas the

replacement of the dye liquid used for dye lasers requires a lot of labor and solid-

state lasers cannot be tuned easily, diode lasers provide excellent stability and are easy

to setup. Modern diode lasers often incorporate reflection gratings attached close to

the laser diode. The diode output is collimated and directed onto the grating, only

reflecting a single wavelength of the emitted light by the first diffraction order. The

reflected light is fed back into the gain region of the diode, hence forming a cavity. By

tilting the angle of the grating with a piezoelectric motor, the laser frequency can be

tuned. In addition, the frequencies can be varied by changing the input laser diode

current and temperature. Latter parameters can be controlled via precision current

sources and thermoelectric controllers (Peltier-elements).

In table 4.1 an overview of our laser systems, including corresponding wavelengths and

frequencies (f = λ/c) are given.
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Name Purpose λ (nm) f (THz) Remarks

Toptica TA-SHG 110 Detect. and Cool. 397 377.61128 freq. doubled
Toptica DL 100 Repump. 866 345.99991
Toptica DL pro PI step 1 422 345.53917 freq. doubled
Toptica DL 100 PI step 2 732 409.09585

PI step 3 832 no grating

Table 4.1. – Summary of the laser systems used to trap calcium ion. PI denotes photoionisation.

Laser locking with the Pound-Drever-Hall technique

The Pound-Drever-Hall technique is a scheme used for laser frequency stabilization by

locking the laser to a resonance mode of a reference cavity via PID-based feedback

control [68, 69]. In this scheme, the cavity reflection is recorded with a photodiode

while scanning the laser frequency, see Fig. 4.3a. If the laser is tuned close to the

cavity resonance, we typically do not know on which side of the resonance we are, i.e. if

the laser frequency is lower (blue-detuned) or higher (red-detuned) than the cavity

resonance frequency. By modulating the laser frequency f0 with a time dependent term

f(t), i.e. f = f0 + f(t), and measuring the derivative of the cavity reflection, we obtain

a signal proportional to the cavity-laser detuning (also see Fig. 4.3b). This signal is

suitable as the error signal for the PID controller.

Note that this explanation is oversimplified for illustrative purposes. The derivative

of the reflection cannot be measured easily and the actual error signal will look much

more complicated than shown in Fig. 4.3b. A rigorous discussion of this topic, which

is beyond the scope of this thesis, can be found in [69].

397 nm: Doppler cooling and Detection

A Toptica TA-SHG 110 frequency doubled laser diode system is used for Doppler cooling

and fluorescence detection. The laser emits light at a wavelength of 794 nm, which is

then frequency doubled to 397 nm using a nonlinear MgO:LN (MgO doped lithium

niobate) crystal in a cavity. To frequency stabilize the laser and narrow down its

linewidth to ≈ 100 kHz, PIDs are employed to lock the laser to a temperature-stabilized

reference cavity and to lock the doubling cavity to the laser. To find the right cavity

resonance, both PIDs receive error signals that are obtained with the Pound-Drever-

Hall (PDH) technique. All Toptica systems are controlled via a SC 110 scan control,

DTC 110 temperature control, and DC 110 diode laser control. Systems with PDH-

based laser locking come with an additional PDD 110 Pound-Drever-Hall detector and
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Figure 4.3. – Reflection of an optical cavity vs. laser frequency exhibiting two cavity modes (a).
Cavity reflection and derivative of the relection for a laser close to the resonance of a cavity mode (b).
A positive derivative implies the laser is blue-detuned whereas a negative derivative indicates that the
laser is red-detuned. If the derivative is zero, the laser is on resonance with the cavity mode. After
[69].

PID 110 PID regulator unit.

866 nm: Repumping laser

Repumping into the Doppler cooling cycle is achieved by a 866 nm Toptica DL 100 that

is locked to a reference cavity (as the 397 nm laser) with a PID and the PDH scheme.

Photoionisation lasers

For the three-step photoionisation process, three lasers are directed onto the atomic

calcium cloud. The 422 nm beam is generated by a Toptica DL pro laser frequency

doubled with a PPKTP (periodically poled potassium titanyl phosphate) nonlinear

crystal in a cavity from 844 nm. Although frequency stabilization is not required for

photoionisation, a self-built PID controller is used for locking the doubling cavity to

the laser in order to find a good cavity mode. Second step PI light is emitted from a

Toptica DL 100 laser with 732 nm diode. The last PI laser is a 832 nm diode driven

with a Thorlabs LDC 202 C laser diode controller. Since the 832 nm excites above the

ionization threshold, no frequency stabilization is required.

Wavelengths of all laser are continuously measured with a HighFinesse-Angstrom WS-7

wavelength meter in the laser room. Data is recorded via a PC and sent to an screen

next to the experimental optical table to allow for remote frequency control.
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Figure 4.4. – Sketch of the electronics that allow for control over the dc electrodes. See text for a
detailed explanation.

4.5. Experimental control of dc and rf voltages

In the following, we will explain the dc and rf voltage sources used for generating the

respective trapping fields on the trap.

Dc control via a FPGA-controlled DAC-board

Since ion transport will generically be achieved by shifting the dc potential minimum by

varying the dc electrode voltages, dc voltage supplies featuring ultra-fast voltage update

rates must be incorporated. This makes the use of FPGA (field programmable gate

array) controlled digital-to-analog converters (DACs) neccessary. Commercial solutions

are available (i.e. from National Instruments); however, they mostly lack in terms of

noise and do not meet our speed limitations. Hence, we built a 19 channel FPGA-

controlled DAC-board. Voltage sets for ion transport can be written on the FPGA and

the ion position is stepped by triggering the FPGA with an external TTL pulse. In this

setup, the most limiting factor is the voltage settling time of the DACs. Using 16-bit

0–2.5 V DACs, we achieve a voltage settling time of 1 µs, corresponding to a update

frequency of 1 MHz. Faster voltage update rates of up to 50 MHz can be obtained [56].

The DAC outputs of 0–2.5 V were differentially amplified to -13–13 V using an amplifier

board. The amplified voltages were then fed into the UHV chamber, see Fig. 4.4. Com-

munication between the experimental control computer and the FPGA was achieved

by employing a microcontroller on the DAC board as an interface. In order to write

voltages or voltage sets on the DACs, a signal was sent to the microcontroller via the

serial port of the computer. The microcontroller then transfered this information to the

FPGA, which distributed it to the DACs as a bitstring. Our DACs had a resolution of

16 bit, i.e. allowing voltage steps of 2.5/216 = 38 µV. The signal that is sent from the

PC to the microcontroller is a character-string that contains the output channel number

(i.e. from 1 to 19), the voltage set index (for ion transport) and a number between 1 and
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Figure 4.5. – Calibration curve to associate the numbers sent to the DAC (via microcontroller and
FPGA) to the output voltage at the amplifier board. Red dots are the measured amplified voltages,
the blue curve is a second order polynomial fit, i.e. Vout = a + bN + cN2. The error of this fit is
displayed above the plot (b). Absolute averaged frequency error for different levels of noise at the
electrode voltages (a).

65355 corresponding to the voltage that should be applied. Sending a number 1 sets

the output voltage of the DAC to the lowest voltage, i.e. 0 V, and 65355 to the highest

voltage i.e. 2.5 V. The microcontroller received these strings and processed it according

to an ANSI-C script that was programmed onto the microcontroller via the PC before.

Control of the DAC board was achieved by implementing a Python script that allows

for the generation of the character strings and the transmission to the microcontroller

via the serial port into an existing LabView experimental control software.

To obtain the exact amplification ratio due to differential amplification, a calibration

routine was programmed. To this end, all DAC output ports were connected to the

amplifier board. Iteratively, each DAC voltage was swept from 0–2.5 V by writing

numbers 1 to 216−1 = 65535 to the FPGA. The amplified output voltage was recorded

by connecting the output of the amplifier board to a Keithley 2100 61
2

digits digital

multimeter. The multimeter was read out remotely from the computer and a second

order polynomial fit according to Vout = a+ bN + cN2 was applied to relate the number

written to the DACs to the amplified output voltage. In Fig. 4.5a a calibration curve is

depicted for channel 1. Corresponding polynomial coefficients a, b and c were fitted for

all channels and saved in a txt-file. By solving the polynomial fit equation for N , that is

N = (−b+
√
b2 − 4c(a− Vout))/2c, and rounding to an integer value, the number that

has to be sent to the microcontroller could be interpolated for a given output voltage

Vout.

To avoid fluctuations in the trapping frequencies and the ion positions, we require a

high stability of the dc voltage supply. Although the voltages at the DAC board were
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measured to be stable up to 1 µV for a voltage range of 0–2.5 V, two adverse effects

were observed when analyzing the output of the amplifier boards: We found considerable

cross-talk between different channels of the amplifier board. While keeping the voltage

at one port constant, changing the voltages at other channels resulted in voltage changes

at the first port in the order of up to 100 mV. Moreover, we detected low-frequency

drifts in the output voltages in the order of 0.1 mV in the timescale of a few Hz.

In order to quantify the effects of noise or fluctuations on the dc electrodes due to bad

amplifiers, we estimated the variation of the trapping frequencies in our planar trap

due to a noisy dc voltage input. A uniformly distributed random noise offset between

±1 mV was added to all simulated trapping voltages and subsequently increased up to

a factor of 10. These noisy voltages were then fed into the MATLAB post-processing

algorithm and secular trapping frequencies were calculated by performing a polynomial

fit around the minima of the secular potential. The obtained frequencies for noisy

dc voltages were compared to the unperturbed simulations. In Fig. 4.5b the absolute

value of the difference between perturbed and unperturbed frequencies are displayed

for various noise magnitudes. To obtain this figure, the calculation was averaged 10000

times.

We traced out the cross-talk issue to a design error of the amplification board. Instead

of providing an individual voltage reference for all op-amps, our design only consisted

of a single voltage reference for all channels (25 op-amps). Different voltage outputs

changed the resistances of the op-amps. This increased the current that was drawn

from the voltage reference. However, the single voltage reference could not deliver this

increased currents for all channels. This resulted in a voltage change depending on the

individual channel output voltages, i.e. cross-talk.

Since we only observed minor voltage fluctuations at the output of the DAC-board,

we decided to employ an only DAC-based solution without the need of an additional

amplification board. This is planned to be achieved by DACs allowing an output voltage

range of ±10 V rather than 0-2.5 V and requiring differential amplification.

Rf source

A radio frequency (rf) field is applied to the rf electrodes of the trap via a vacuum

feed through at the bottom of the vacuum vessel (next to the oven current supply),

see Fig. 4.6a. The signal is created by a Rohde & Schwarz SMB 100A signal generator

with an limited output rf amplitude of 1.77 V. In order to amplify the rf signal to an

amplitude of 100-200 V, a helical resonator provides the corresponding voltage step-up.

Helical resonators consist of a winded solenoid shielded by a conducting enclosure, see

Fig. 4.6b [70]. The length of the solenoid corresponds to the λ/4, hence resembling a

classical coaxial resonator. One end of the solenoid is grounded to the shield while the
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Figure 4.6. – Schematics of our radio frequency setup (a). A helical rf resonator, which is used for
signal ampification (b). Voltage across the solenoid depending on the solenoid length. By connecting
an rf signal to a given insertion point on the solenoid, the voltage is amplified according this plot (c).
Illustration of the helical resonator after [70].

other is connected to the trap. Amplification is achieved by connecting the output of

the rf generator to an insertion point on the helix, see Fig. 4.6c. This point is found

experimentally by maximizing the step-up.

The optimal rf frequency was found by minimizing the reflection measured between the

signal generator and the resonator with a Rohde & Schwarz Bidirectional Power Meter

NAS. In addition, the corresponding rf amplitude was measured by monitoring the peak-

to-peak voltage of the signal on a Tektronix TDS 1002 Digital Storage Oscilloscope.

This was achieved by splitting the rf signal after the resonator with a capactive voltage

divider.

4.6. Towards trapping ions with a monolithic surface

trap

In the following, we will describe the work that was done towards trapping ions with the

planar surface trap discussed in the previous chapter. Measuring trapping frequencies
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Figure 4.7. – Simplified illustration of the UHV chamber and laser access to the trap. Top view (a)
and side view with fluorescence detection path (b). Red and blue arrows denote to the beam paths of
the red- and blue lasers, respectively.

and comparing them to our theoretical results would have provided a benchmark for

our simulation.

Optical access to the UHV chamber

After baking the UHV vessel for approximately 5 weeks at 150◦C, a pressure of≈ 3·10−11

mbar was reached. Then, the optics and lasers required for photoionisation, cooling and

detection were set up according to Fig. 4.7. Fig. 4.8a shows a photograph of the vacuum

vessel and the trap inside. 7 viewports allow for the access of the respective laser beams

along the trap. Since all beams are coupled into single-mode optical fibers, we employ

collimator objectives to collimate the beam after coupling out of the fiber. All blue

(i.e. 397 nm, 422 nm) and red (732 nm, 832 nm, 866 nm) lasers were coupled into the

same fibers, reducing the number of collimators to two. The collimators are mounted

on xyz-translation stages, allowing for alignment of the beam parallel to the trapping

surface. The translation stages can be controlled remotely via a measurement PC,

allowing for fine adjustment of the position of the laser beams during trapping.

Fluorescence is detected by collecting the light with a NA = 0.27 microscope objective

and directing the signal with a 2-inch mirror into a photomultiplier-tube and a Andor

Luca EMCCD camera. Both detectors were placed in a box that can be sealed to reduce

stray light. Access is given by removing the top- and side covers. In addition, a black

cardboard-tube is placed between the mirror and the opening of the detection box. For

simultaneous detection with the PMT and the CCD camera, a pellicle beam splitter

splits the light into both respective directions. Threads on both CCD and PMT allow

for the attachment of optical filters. PMT and CCD signals are recorded with a PC.

To adjust the focus of the objective onto the trap and align the trapping region with
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the slit in front of the PMT, we illuminated the trap with a halogen lamp. By holding

a paper sheet in the light path, we could see a clear picture of the trap and adjust the

vertical and horizontal alignment. While imaging the trap with the CCD camera and

displaying it on the computer, we tuned the focus of the objective. To align the beams

parallel to the trap at exactly the trapping height of 80 µm, we grazed the trap with

the beams. To this end, we varied the angle and height of the laser beam collimators

until no scatter on the electrodes could be detected any more. In order to maximize

the photoionization cross section, we increased the laser beam waists to a diameter of

roughly the trap slit width.

After aligning the optics, we connected the calcium oven to an Agilent E3614A dc power

supply in order to evaporate neutral calcium and direct the beam through the slit of

the trap. Switching on the photoionization lasers and recording signals with the PMT,

we could observe neutral atom fluorescence with a peak intensity of 2000 kcounts at a

current of 4 A. Second step fluorescence was observed by illuminating the trap with the

732 nm beam. While scanning the 1S0 ↔1 P1 transition by approximately 100 – 200

MHz, a clear dip in the fluorescence peak was visible, proving the excitation to the 1D2

state.

Trapping ions

After creating ions with the PI lasers, we directed the Doppler-cooling laser in a 45

degree angle to the slit with the 397 nm laser and illuminated the direction along the

slit with the 866 nm beam to achieve repumping into the Doppler cooling cycle, see

Fig. 4.7a. Although we attempted trapping at two distinct positions, i.e. in the center of

the trap between electrodes 10 and 11 and at the left side of the trap at electrode 4 (see

Fig. 3.2), ions could neither be detected in the CCD camera nor with the PMT. Due to

a lack of benchmarks for the calculated trapping voltages, we doubted the accuracy of

our theoretical results. Since the trap had successfully been tested by the manufacturer

Sandia National Laboratories before with a set of voltages that was obtained in an

independent simulation, we tried to apply their voltages. However, we also failed to

trap with those voltages. As a result, we vented the chamber under argon reflow (see

section 4.1) to verify the connection of all dc electrodes with the voltage supply. We

also examined the trap surface with a microscope. By gently touching the trap surface

with a wire-bond wire, we found out that electrodes 2, 5 and 8 were not connected,

and two electrodes were shorted by a piece of metal. We suspect that the reason for

these problems arose from the fact that the trap had previously been repaired: During

the shipment from Sandia Labs, the connections between the trap electrodes and the

bonding pads were disrupted. To fix those damages, corresponding connections were

glued with conducting silver epoxy. Presumably during bake-out, some of the repaired

connections broke. The short could be due to silver epoxy that had erupted and hit
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the trap surface.

In the following, the damaged trap was removed and replaced with a second copy we had

received from Sandia Labs. To check the connections, we also measured the resistances

between the vacuum feed through D-SUB connectors and the trap electrode surface.

However, resistances between 100 Ω and 200 Ω instead of expected 1− 10 Ω suggested

connection problems for this trap as well. Trapping was not possible with this trap

either.

Since the infrastructure (oven position etc.) in our UHV chamber was prepared to match

the Eurotrap and waiting for traps fabricated by our own group would have delayed the

project significantly, we decided to obtain a third new copy from Sandia. In addition,

other groups (e.g. the Oxford Ion Trapping Group) had no troubles and could trap

easily. The shorted trap was sent back to Sandia for inspection and exchanged for a

new copy. Unfortunately, the trap was not delivered by the time this manuscript was

prepared.
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Figure 4.8. – Photographs of the experimental setup (a) and detailed view onto the trap (b). The
trap is mounted to a Kyocera 100 pin ceramic pin grid array (CPGA). This packaging allows for easy
removal and replacement of the trap inside the vacuum apparatus. Electric connection to the dc and
rf supplies is given by D-SUBs vacuum feed throughs. Laser access is provided by 7 viewports (three
on each side and one on the top for detection). The alignment of the apparatus in (a) corresponds to
the schematic illustrated in Fig. 4.7b.
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5. Conclusion and Outlook

In this thesis, the main principles for simulating a microfabricated surface trap using

the boundary element method were elucidated. An algorithm employing a expansion of

the potential in spherical harmonics for obtaining dc trapping voltages was explained.

Corresponding voltages for trapping at fixed positions and transporting calcium ions

in a monolithic silicon trap were calculated. Transport speed limitations due to the

heating of the ion by shifting the dc potential well were discussed. We could show, that

besides trapping a single ion, two-ion trapping can be achieved.

We analyzed the trajectories of the trapping voltages during transport and fitted trap-

ping frequencies in a harmonic approximation. Moreover, trapping depths throughout

transport were examined. In a near-adiabatic limit, transport within ≈ 100µs following

a sine-type transport function has been shown to have no effects on heating the ions.

Although no experimental verification for the simulated trapping frequencies could be

given, a typical experimental setup for trapping ions in a planar trap was elucidated.

Experimental control over dc electrodes was achieved by employing FPGA-controlled

digital-to-analog-converters. Manipulation of the dc voltages for shuttling was realized

by interfacing the FPGA via a microcontroller and the serial port of a computer.

The transport of ions is an essential step towards the coupling of the motional states

of two ions via a floating wire [71]. In order to transfer information between the ions,

shuttling to well-defined positions underneath the wire is essential. For generic ion

trap quantum computers, qubit transport will be vital to bring ions together in order

to achieve coupling and shuttle from loading- to readout zones to perform quantum

logical operations [1]. In future ion trap designs, rf- instead of dc electrodes could be

used for shuttling, allowing to reduce micromotion-induced heating during transport

through structures incorporating cross-junctions [72].
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A. Appendix

A.1. Mathematical Framework of BEM

To find the solution to Laplace’s equality, we start with Green’s second identity [51],∫
V

(φ∆ψ − ψ∆φ) d3x =

∮
S

(
φ
∂ψ

∂n
− ψ∂φ

∂n

)
dA, (A.1)

where ∂φ/∂n is the normal derivative, i.e. ∂φ/∂n = ∇φ ·n. We then set ψ = G(x,xj) =

−1/|x−xj|, i.e. Green’s function in three dimensions and φ(x) = Φ(x). Then, plugging

in ∆Φ = 0 and using the identity

∆G(x,xj) = −4πδ(x− xj) (A.2)

yields

Φ(xj) =

∮
S

(
Φ(x)

∂G(x,xj)

∂n
−G(x,xj)

∂Φ(x)

∂n

)
dA

=
N∑
i

∮
Si

[
Φ(x)

∂G(x,xj)

∂n
−G(x,xj)

∂Φ(x)

∂n

]
dA (A.3)

where the second equality holds since for applications of BEM we have to discretize the

boundary surface S into N triangular shaped surface elements. One has to do some

careful considerations now: If the point xj approaches the boundary surface element

Si, the first term of the above expression will give rise to discontinuities and has to be

written as a principle value integral [57]. That means,

lim
xj→Si

∮
Si

Φ(x)
∂G(x,xj)

∂n
dA =

PV∮
Si

Φ(x)
∂G(x,xj)

∂n
dA+ Φ(xj)

1

2
. (A.4)

The second term of Eq.(A.4) arises if the integral is evaluated exactly at the bound-

ary surface Si. This can be directly seen by using the divergence theorem and using

identities for Green’s function. Plugging in Eq. (A.4) into Eq. (A.3) then gives us the
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A. Appendix

expression of the potential for a point xj that lies on the boundary surface Si:

Φ(xj) = 2
N∑
i

 PV∮
Si

Φ(x)
∂G(x,xj)

∂n
dA−

∮
Si

G(x,xj)
∂Φ(x)

∂n
dA

 . (A.5)

We then assume that both the potential Φ(x) and normal derivative of the potential

∂Φ(x)/∂n are constant for each boundary element and we write them in front of the

integral. This approximation is valid since we deal with metallic surfaces that are either

kept at constant potential or have a constant surface charge density. This assumption

is called local element approximation and is the simplest implementation of the BEM

[57]. By substituting

βij =

PV∮
Si

∂G(x,xj)

∂n
dA (A.6)

αij =

∮
Si

G(x,xj) dA (A.7)

it then follows directly that

Φ(xj) = 2
N∑
i

Φ(xi)βij − 2
N∑
i

∂Φ(xi)

∂n
αij. (A.8)

Solving the above equation gives us the potential at a point that lies on a boundary

surface in the local element approximation. In general, however, we are not interested

in the potential at the electrode surfaces but rather at some point in space that is

enclosed by those surfaces. To this end, one can go back to Eq. (A.3), again use the

local element approximation and obtain:

Φ(x) =
N∑
i

Φ(xi)βij −
N∑
i

∂Φ(xi)

∂n
αij, (A.9)

which is essentially the same as Eq. (A.8) without the factor 2. For the sake of clarity,

the variable xj has been exchanged with x to distinguish this potential from the po-

tential at the surface Si. In practice one will now try to solve Eq. (A.9) to obtain some

potential for a given electrode configuration. The coefficients βij and αij can be calcu-

lated analytically and can be looked up in [2], [73]. To get a set of Φ(xi) and ∂Φ(xi)/∂n

one needs to solve Eq. (A.8) algebraically. To this end, we recast the expression in a
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matrix form setting Φ(xj) = Φj:

(βij −
1

2
δij)Φi = αij

(
∂Φ

∂n

)
i

, (A.10)

with δij the Kronecker delta. For a given potential at a surface electrode Φ(xi) one

can then calculate the surface charge density ∂Φ(xi)/∂n and vice versa. This means,

the main difficulties in solving potentials with the BEM arise from a matrix inversion

problem as stated in Eq. (A.10).

To sum up, one can calculate surface charge densities σi for given potentials Φi on

discretized boundary surfaces according to Eq. (A.10), which states a matrix inversion

problem. Finally, the free space potential is obtained by summing up all contributions

from potentials and surface charge densities according to Eq. (A.9). Matrix inversion

using the Gauss-Jordan elimination typically scale with O(n3) for n×n matrices. Em-

ploying the fast multipole method for the matrix inversion problem [74] decreases the

computational complexity to O(n). However, a detailed explanation of the FFM is

beyond the scope of this thesis.
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