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Abstract

We discuss interfacing trapped atomic systems with solid-state systems such as superconducting

Josephson-junction devices or nanomechanical oscillators. Such hybrid quantum systems could ease

scalable quantum information processing and yield novel and profound in- sight into the quantum

mechanics of macroscopic quantum many- body systems. We review the relevant interactions

and illuminate the role of the vastly differing impedance of atomic and solid-state systems. We

give some basic guidelines toward combining quantum systems, and finally, discuss some concrete

proposals to interface atomic with solid-state systems.
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I. INTRODUCTION

The control of atomic systems has reached an unparalleled level. Employing laser cooling

and control, such complex quantum phenomena as entanglement have been demonstrated

and are well controlled both on the individual atom level [1, 2], as well as on the scale of

few thousands or millions of atoms [3]. From a fundamental aspect, these are quite exciting

developments, but the transfer of quantum control to technological applications is impeded

by delicate engineering requirements.

At the same time, solid-state devices are the driving force for technological innovations

with a broad range of applications, especially in electronics. With respect to exploiting

quantum properties, superconducting devices are quite attractive [4–6]. These can be con-

trolled very well, and recently their coherence properties have been extended almost into

the 100-ms regime [7, 8].

It is tempting to merge these disparate systems into new quantum devices and to take

advantage of their different features. For instance, in view of scalable quantum information

processing, we envision that trapped atoms can serve as a quantum memory, while the

actual processing would be carried out with an array of Josephson-junction devices. So,

from a technological perspective, we can capitalize on the respective advantages of different

platforms to build novel devices with improved characteristics.

From a more fundamental standpoint, such hybrid quantum systems can enable us to

study collective quantum effects in condensed matter systems. To do this, one can probe

the quantum mechanics in the solid state, using the sophisticated toolbox available for

atomic systems. In particular, we envision preparing an atom in an interesting quantum

state such as a Schrödinger cat state and then transferring this state back and forth be-

tween the atom and a complex solid-state device. Reconstructing the quantum state of

the atom after this procedure will give us valuable insight into the decoherence properties

of the degree of freedom the atom was coupled to and more generally into the emergent

quantum mechanics of the solid state. Such systems will combine the bottom-up approach

of assembling individual atoms into complex quantum devices with the top- down approach

of isolating individual degrees of freedom in the solid state. The purpose of this review is to

evaluate various options and to assess the difficulties in this endeavor of merging quantum

systems. We choose to cover a relatively wide variety of physical systems at the expense of
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providing detail for each.

We concentrate on interfacing individual degrees of freedom of trapped atoms or ions on

one side, with collective degrees of freedom of solid-state devices such as Josephson-junction

devices and nanomechanical oscillators. We focus on the electromagnetic interactions of

atoms, mainly with electrical circuits, and mention briefly the coupling to mechanical sys-

tems. Superconducting devices are currently the most advanced solid-state platform for

quantum information processing. Nanomechanical oscillators, however, are straightforward

to couple to and are promising as transducers. They were recently reviewed by Hunger

et al. [9]. We do not discuss here interfacing atoms to other solid-state systems such as

nitrogen-vacancy (NV) centers in diamond or semiconductor devices such as quantum dots,

despite the interesting physics involved.

Often, the observation of quantum mechanical degrees of freedom in condensed matter

is linked to the question of under which conditions such behavior should, in principle, be

observable [10, 11]. The experimental systems required to investigate this question may

need to meet different design guidelines than systems optimized for quantum information

processing (9). We do not address this issue here. Instead, we take the practicing experimen-

talist’s approach that quantum mechanical behavior is, to date, limited by technical sources

of decoherence, i.e., environmental degrees of freedom that are not sufficiently controlled

[12].

A. Challenges and Features

The difficulties associated with interfacing atoms with solid-state systems can hardly be

over- estimated. We see challenges on both the technological and the physics side. On

the technological side, trapped-atom physics methods greatly differ from the methods used

in quantum control of solid-state devices. For instance, to interface a trapped ion with

a Josephson-junction device, we must master quantum control via laser cooling on the

ion trapping side and device fabrication, dilution refrigerator technology, and microwave

electronics on the other side. Thus, each side brings already unique challenges to the table.

In addition, we must not neglect that these technologies have to be made compatible with

each other. Most proposals require optical access in the dilution refrigerator which, although

in principle feasible, causes additional complications. We also need to be careful that the
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lasers used to manipulate the ion do not heat up the interface. Another set of complications

might arise from the connections of the ion trap to the outside world. Similar cases can be

made for other system combinations, for instance when trying to interface neutral atoms

with the solid state. Here in addition to excellent optical access, strong magnetic or optical

fields, which could harm the coherence of the solid-state quantum system, are required.

The second level of challenges is connected to the basic properties of atomic and solid-

state quantum systems. Two of the most striking features of single atoms are their small size

and weak coupling to the environment. If trapped in free space, atoms are well separated

from the bulk, enabling long coherence times that extend well beyond the minute timescale

[13, 14]. However, the weak coupling to the environment makes it hard to establish strong

coupling between different atoms. The situation is almost exactly the opposite for most solid-

state systems [5]. The system size is typically much bigger and sometimes even macroscopic.

The resulting strong dipole moments allow for strong coupling of the systems to each other

but also to the environment. As a result, we often see reduced coherence times on the ms

timescale. This poses the challenge that the solid-state system must be coupled to the atomic

system within the coherence time of the solid-state system. This automatically implies that

we need to selectively couple the relevant degree of freedom of the solid-state system more

strongly to the atomic degree of freedom than to the sum of all other degrees of freedom in

the solid-state environment. In other words, the signal induced in the solid- state system by

the quantum fluctuations of the atomic system must be stronger than the noise within the

solid-state device, and likewise for the signal and the noise induced on the atomic system.

Thus, to avoid 1/f noise, which is quite prominent in the solid state, we have to use coupling

mechanisms at high frequencies and engineer both systems such that they are immune to

noise at low frequencies.

The task of having the solid-state system strongly couple to the atomic system is in

many cases complicated by the somewhat small dipole moments of the atomic systems. This

difficulty in interfacing quantum systems is related to impedance-matching considerations,

and we discuss this aspect in more detail in Sections 3 and 4. We discuss how introducing

a mediating system can, in certain cases, be viewed as an impedance-matching procedure.

In analogy to other fields, we call this mediator the (quantum) bus. Such a bus can have

two other advantages: If supporting a resonance, it can filter 1/f noise and thus protect the

solid-state system. It can also physically separate the two systems and, as such, could ease
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technological challenges. For instance, it could allow one to place the ion/atom trap in a

4 K environment, while operating the solid-state at dilution refrigerator temperatures.

One additional difficulty in building a hybrid device is that the atomic system might not

resonate at the frequencies that are practical for solid-state applications. Such a timescale

separation is not necessarily a complication. Slower dynamics can be accompanied by lower

decoherence rates, and in this respect we can take advantage of different timescales of the

atomic and solid-state systems. The frequency mismatch can be resolved by exploiting

nonlinear effects in combination with a parametric drive, as mentioned in this context first by

Heinzen & Wineland [15], and recently made more specific by Kielpinski et al. [16]. Finally,

if we want to store quantum in- formation in the atoms, we need to switch off the coupling of

the atomic degree of freedom to the solid-state system. Typically, either of the two systems

is tunable and the switching can be achieved by changing the resonant frequencies. When

using a bus or parametric frequency conversion, additional options appear.

B. Nomenclature

In the literature, hybrid systems often include two identical quantum systems connected

via a third one, such as, for instance, two trapped ions in a single trap connected via their

common vibrational modes. Here, however, we require that two quantum systems of different

nature be linked with a deterministic quantum interface either via a direct coupling or via

a quantum bus. Therefore, in abstract terms, a basic hybrid quantum device consists of

two qubits and a quantum bus to interconnect them (see Figure 1). As a working criterion

for what constitutes a hybrid, we take the requirement that the two qubits correspond

to different physical realizations of a two-level system (TLS), e.g., a trapped atom and a

superconducting qubit, or a superconducting qubit and an isolated NV spin.

Having this basic architecture in mind, we overview in Section 2 some of the different

physical systems that are considered in hybrid device design. The list is not comprehensive,

but limited to atomic and solid-state systems that have so far shown the biggest promise

as quantum information platforms and to systems that have the potential to complement

the already established ones. We also review the basic interactions between such systems,

mainly with the aim to get a feeling for the typical strengths of different interactions, and for

how these compare to the parameters of the quantum LEGO blocks. We then outline some
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FIG. 1. A generic hybrid quantum system, consisting of two qubits and a bus to interconnect

them.

basic considerations and rough rules on the importance of decoherence in hybrid devices,

as well as hint to additional challenges that hybrid devices might face. Finally, we review

some specific proposals that cover a wide variety of interactions and add our own estimates

on what the experimental issues might be for each. The main purpose of the following

discussion is to try and treat all the different possible systems on an equal footing and allow

the reader to develop some intuition—thus we try to point out the common features and

the differences. We hope that our approach offers useful insight and fruitful guidelines to

researchers in the field seeking to evaluate existing hybrid systems or to propose new ones.

II. PHYSICAL SYSTEMS

We first give an overview of the properties of quantum systems that are usually considered

as candidates for hybrid devices. We focus on their typical dipole moments, which will

influence how strongly they couple to other devices, as well as the known and anticipated

challenges in maximizing their coherence properties. We cover those solid-state and atomic

systems that are promising due to the potential for strong interactions and long coherence

times.

We start with Josephson junction–based superconducting quantum devices. The class

of superconducting charge qubits (i.e., the so-called Cooper pair box and its variants) of-

fers a solid-state realization of a TLS with promising coherence properties and very high

electric dipole moments [5, 17, 18]. The energy levels of a charge qubit arise as a result of

the competition between the charging energy of the island and the Josephson energy of a

superconducting weak link [19]. A schematic of the basic implementation of this device is

shown in Figure 2a. The variables that determine the dynamics of the charge qubit are the

charge across the capacitance between the island and ground and the gauge invariant flux
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across the junction. These are experimentally controlled via an externally applied voltage

and an externally applied magnetic field, respectively. The circuit is usually tuned to a pa-

rameter regime where tunneling of one additional Cooper pair into the island does not result

in a change of electrostatic energy. In this regime, the device can be operated at dilution

refrigerator temperatures as a tunable spin, in the two-dimensional Hilbert space composed

of the states |0〉, |1〉 with N and N + 1 Cooper pairs in the island, where N is some integer

(hence the name Cooper pair box) [19]. Thus, the qubit states, typically superpositions of

the type |0〉 ± |1〉, and the transition frequency, typically in the GHz range, can be tuned

by geometric design and external electric and magnetic fields. A more detailed discussion of

these issues can be found in Reference 16. The dipole moment can be viewed as arising from

the tunneling of a Cooper pair across a weak link between the superconducting island and

the superconducting reservoir. The mean distance, d, between the island and the reservoir

can range from micrometers to millimeters, giving rise to a high dipole moment that scales

as 2e d. The coherence properties of charge qubits have steadily improved over the past

decade, due to a combination of careful engineering of the device design, and operation,

and the fabrication methods, resulting in the transmon design, and more recently to the

‘three-dimensional’ transmon qubits [7, 8, 19? , 20]. Currently, energy relaxation times T1

are up to 200 µs [7, 8, 21] (see Section 5 for a brief discussion of the terminology describ-

ing decoherence). They are thought to be limited by charge fluctuations in the dielectrics

surrounding the qubit, nonequilibrium quasiparticles in the superconductor, or losses and

residual photons in the microwave elements that are coupled to the qubits. The latter mech-

anism is also thought to limit the effective dephasing time, T2, currently reaching 95 µs [7, 8].

An additional mechanism that can additionally limit the coherence time is critical current

fluctuations in the Josephson junction.

Superconducting flux qubits consist of a SQUID loop that contains an additional inductor,

as shown in Figure 2b. This circuit shows nonlinear behavior, due to the competition between

the magnetic energy in the inductor, L, and the Josephson energy in the junction. It can

be tuned by external magnetic fields, with typical transition frequencies also engineered

to be in the GHz range. When the circuit is biased by an external magnetic field to a

midpoint between integer numbers of flux quanta penetrating the loop, the different states

of the circuit correspond to symmetric and antisymmetric superpositions of current running

through the loop in opposite directions [19]. The magnetic moments generated by these
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FIG. 2. (a) Schematic of a superconducting charge qubit. A Josephson junction with Josephson

energy EJ , and capactiance CJ is biased by a gate voltage Ug, through a gate capacitance, Cg. (b)

Schematic of a flux qubit, in which a junction is in series with an inductor, L. The flux through the

loop containing the Josephson junction is controlled via an external current, I. (c) SEM picture of

a superconducting charge qubit, from [22]. In this case, the qubit contains two junctions in parallel,

to allow tunability with an external magnetic field. (d) SEM picture of a flux qubit, from [23].

The qubit is coupled to a SQUID for readout. The qubit flux bias is controlled via the currents Ib
and IMW.

currents can be remarkable, reaching the regime of 1010 µB for large devices with a radius

of a few millemeters [24]. This implies that the flux qubit will couple magnetically to other

devices or atoms. For applications where scalability and integration of the device into a

complex system is desired, a limit will probably have to be placed on its physical size.

Then, the magnetic moment can be viewed as being localized in space and can magnetically

interact with different magnetic systems in an efficient way. As an order of magnitude

estimate under these restrictions, the superconducting currents can be fractions of a µA,

and the area of the loop can be several square mm, with resulting magnetic moments as high

as 5× 105µB [25]. Currently, the energy relaxation times are T1 ≈ 10 µs, but an additional

source of flux noise is known to limit the dephasing time T2. The source of this noise is

thought to be fluctuating electron spins on the surfaces of the Josephson junctions in the

device and is currently under investigation [26]. At the moment, the ultimate limit for the

coherence time of Josephson junction–based qubits is hard to estimate, but it is expected

that careful materials engineering can yield significant improvements.
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There is a third class of superconducting circuits that also offers a very successful imple-

mentation of a qubit, the so-called phase qubit, which the Santa Barbara group is pursuing

[27]. This device consists of a Josephson junction that is biased with a direct current close

to the junction critical current. The control parameter that allows manipulations of the

quantum state in this device is the current flowing through the junction. To our knowledge,

there exist no proposals for coupling the phase qubit to atomic systems. Nevertheless, the

general context described in the following sections could be adapted to include this kind

of circuit. In particular, phase qubits are strongly coupled to on-chip electrical resonator

circuits with a controllable coupling, and the methods that we overview in Sections 3 and

4 can undoubtedly provide various solutions to coupling a phase qubit to an atomic system

via such a resonator. However, such a treatment is beyond the scope of this review, and

here we do not deal with this circuit in more detail.

We now move on to superconducting microwave resonators that are currently used in the

Josephson junction–based implementations of quantum information platforms, but they can

prove useful in generic hybrid systems, as we discuss in Section 3. These can be coplanar

waveguides (CPW) [17], lumped-element resonators [? ], and—in light of recent devel-

opments in three-dimensional circuit cQED [7]—even three-dimensional microwave wave-

guides. The basic parameters of interest for such a resonator are the intrinsic quality factor

and the characteristic impedance that can be achieved. The characteristic impedances of

planar microwave resonators can vary from a few Ω [28] to kΩ if high kinetic inductance

conductors are used [29]. The internal quality factor (Qi) of CPW resonators is limited by

fluctuating TLSs in the interface between the superconductor and the dielectric substrate

of the device [30–32]. A striking consequence of this is that Qi decreases by one to two

orders of magnitude as the temperature of the resonator decreases from liquid helium to

dilution refrigerator temperatures, and as the energy stored in the resonator decreases to

the few-photon level. This is a result of saturation of the TLS. In recent years, significant

efforts in materials engineering have resulted in an increase of Qi [33, 34], with values at

the single-photon level currently exceeding 106 [35]. Moreover, it has been realized that the

resonator losses can be limited by reducing the participation of the dielectric-superconductor

interface in the resonant mode. One way to achieve this is by building higher characteristic

impedance CPW resonators [36]. In light of the very high internal quality factors (Qi > 107)

achieved with high kinetic inductance resonators in the 1–2 GHz range [29], it would be

9



very interesting to explore the possibility of further increases in quality factor at higher fre-

quencies if this technology is employed to further reduce the effect of dielectric losses on the

resonator. Finally, a very efficient way to reduce the participation of TLS in the resonant

mode is to turn to three-dimensional cavity resonators [7, 8]. In these, the electric field of

the resonant mode has a very small overlap with the walls of the cavity, where impurity TLS

fluctuators reside, and the resulting quality factors can be very high. Quality factors higher

than 1010 [37] have been measured at 1 K in a cavity with a different geometry and for a

higher frequency than the ones used in [7, 8, text].

We now move on to atomic systems. Rydberg atoms (and ions) carry rather remarkable

electrical dipoles of order n2 e a0, where n is the principal quantum number e the elementary

charge, and a0 the Bohr radius. This is due to the large extent of the electron orbital in

highly excited states with n ∼ 50 or more. Typical transition frequencies range from a few

GHz to more than 50 GHz and can be tuned with a static electric field via Stark shifts

[38, 39]. Rydberg states are long lived, with lifetimes scaling as n3, and can thus serve

as quantum memories [40]. Radiative relaxation times are in the range of 50 ms up to

fractions of 1 ms for n ¿ 50 (36).50 µs up to to fractions of 1 ms for n > 50 [38]. The main

mechanism expected to limit the coherence times of Rydberg atoms in the context of hybrid

systems is electric field noise, due to the sensitivity of transition frequencies to electric fields.

If the Rydberg atoms are used in the presence of biasing static electric fields, the typical

sensitivity of the transition frequency to electric fields is 100 (100/n)2 MHz/(V/m) [38]. We

will estimate the influence of this later, in Sec. VI.

Polar molecules have dipole moments of a few Debye [41]. The degeneracy of the rota-

tional manifold of the molecule can be broken by a dc electric field that provides a quan-

tization axis. At the same time, the magnitude of the static field serves as a tuning knob

for the molecule transition frequency due to the static Stark effect. As in the case of Ryd-

berg atoms, this means that electric field noise will cause dephasing of the molecular state.

Typical transition frequencies are in the low GHz range [42]. Besides tuning the transition,

the static electric field can be used to tune the molecule to a sweet spot that is relatively

insensitive to electric field variations, thus increasing the dephasing time of the molecular

qubit [42]. The coherence time can be further increased by mapping the quantum informa-

tion from the rotationial state of the molecule onto its internal hyperfine state. For this, one

would employ a microwave field driving transition of the form |N,F3,mF3〉 ↔ |N ′, F ′3,mF3〉,
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where N refers to the rotational quantum number of the molecule and F3 to the hyperfine

quantum number of the molecule [42, 43].

Trapped ions can be viewed as possessing an electric dipole moment, given that they

behave as point charges in a harmonic trapping potential (for a review of the quantum

dynamics of trapped ions we refer to [44]). The dipole moment is proportional to the extent

of the motional ground state wavefunction, and it is given by µ = e x0 = e
√

~/(2mω), where

m is the ion mass, and ω the ion frequency in the trap. The ion frequency is adjustable in

the range from a few hundred kHz to several MHz. The masses of ions used for quantum

information range from 9–200 amu. This means that the extent of the ion motional state

wave function is typically less than 30 nm. The lifetime of the ion motional state is relatively

long, on the order of tens of milliseconds for ions trapped 40 µm from a surface in a cryogenic

environment [45], and the motional state can be mapped onto long-lived electronic [46], or

hyperfine, states [47]. The motional state lifetime is dominated by electric field noise of

unclear origin [48]. The noise is thought to be caused by impurities adsorbed on the trap

electrode surfaces and to scale as 1/d4 with the distance (d) of the ion from the trap electrodes

[49]. The typical measured power spectral density near surfaces at cryogenic temperatures is

SE ∼ 10−6 (f/MHz)α (1/d/µm)4 (V/m)2 /Hz [50], where α can be in the range 1–2 [51]. At

room temperature, the noise is typically two or more orders of magnitude higher. Recently,

the electric field noise was reduced by sputter cleaning of gold surfaces in vacuum to values

comparable with those achieved in cryogenic traps [52]. However, less aggressive cleaning

methods will certainly be beneficial for sensitive devices. Moreover, the effect of cleaning

methods in cryogenic temperatures is unknown. This type of noise puts a limit on how close

to solid-state devices trapped ions can be practically useful. As we will see in Section 6, this

type of noise could severely impact the atomic systems in many hybrid device applications,

and con- siderable effort is made to understand and eliminate it.

The case of mechanical oscillators, such as cantilevers, nanobeams, or membranes, is

similar to that of trapped ions: The dipole is formed by the mechanical motion of electrical

charge, or in the case of magnetized oscillators, of a magnetic dipole moment. Typical

masses are in the pg regime, whereas the frequencies can be from a few kHz (51) to several

tens of MHz (52). As a result, the extent of quantum mechanical motion, determined by

the size of the ground state x0, is in the pm range. The cantilever quality factors can exceed

106 at room temperature and 10 7 at cryogenic temperature (53, 54). In the latter case,
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the losses are thought to be dominated by defects acting as tunneling TLSs in the resonator

material (55). Mechanical oscillators allow an interface of atomic systems with the field of

cavity optomechanics, linking to a large number of systems in which quantum mechanical

behavior is explored. For a recent review of these systems, see Reference 7.

The case of mechanical oscillators, such as cantilevers, nanobeams or membranes, is

similar to that of trapped ions: the dipole is formed by the mechanical motion of electrical

charge, or in the case of magnetized oscillators, of a magnetic dipole moment. Typical

masses are in the pg regime, whereas the frequencies can be from a few kHz [53] to several

tens of MHz [54]. As a result, the extent of quantum mechanical motion, determined by

the size of the ground state x0, is in the pm range. Their quality factors can exceed 106

at room temperature, and 107 at cryogenic temperature [55, 56]. In the latter case, the

losses are thought to be dominated by defects acting as tunneling two level systems in the

resonator material [57]. Mechanical oscillators allow an interface with the field of cavity

optomechanics, linking to a large number of systems in which quantum mechanical behavior

is explored. For a recent review of these systems, see [9].

Despite their large mass, and correspondingly small oscillation amplitudes, macroscopic

oscillators can carry several thousand elementary charges, which makes for a dipole mo-

ment µel = q x0 in the several Debye range. Mechanical oscillators can also carry magnetic

particles. Assuming a magnetic moment µ ≈ 106 µB, the oscillating magnet produces and

oscillating magnetic field, which can mediate the coupling of the mechanical motion to other

magnetic dipoles (see, for example [53, 58, 59]). The strength of the interaction with a mag-

netic dipole is determined by the amplitude of the oscillating magnetic field at the mechanical

oscillator frequency B = 3µ0µx0

2π d4 , at a distance d from the magnet. This can be viewed as

arising from a magnetic dipole of the magnetized oscillator, given by µmag = 3µx0/d, which

can be several tens of Bohr magnetons.

These systems offer a large toolbox to accommodate a variety of new ideas. Out of the

various solid-state and atomic systems which we will not cover in detail, we mention NV

centers in diamond, which are suitable for coupling. e.g. to superconducting flux qubits

[60–62]. In a way, NV centers in diamond resemble atoms trapped in a solid state diamond

matrix, and show rather promising coherence times of up to seconds, if care is taken to

reduce nuclear spin coupling in the diamond host [63].

Electric and magnetic dipole systems currently pursued by different experimental groups
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Electric dipoles

System µel ω/2π T1 T2

Superconducting

charge qubit

104-106 D [7, 18] 1-10 GHz [19] 0.2 ms [21] 92 µs [8]

Rydberg atom 103 − 104 D [38] 5-50 GHz 50 µs - 1 ms

[38]

(Sec. VI)

Trapped ion mo-

tion

5× 102 − 103 D [44] 0.1-10 MHz [44] ∼10 ms[45] -

Polar molecule 1− 10 D [41] 1-10 GHz [42] µs-ms

(Sec. VI)

ms

(Sec. VI)

Charged mechan-

ical oscillator

2-20 D 1-50 MHz 160 ms [56] -

Magnetic dipoles

System µmag ω/2π T1 T2

Superconducting

flux qubit

5× 105 µB [25] 1-10 GHz [19] 12 µs [64] 23 µs [64]

Magnetized me-

chanical oscillator

10− 50µB [53–55] 1-50 MHz 160 ms [56] -

NV spin in dia-

mond

∼ µB GHz 380 s [] 1.8 ms [63]

Resonators

System Z ω/2π T1 T2

Lumped element

resonator

O(50) Ω GHz 1 µs [65] -

CPW resonator O(50) Ω GHz 45 µs [35] -

TABLE I. List of candidate systems used as electric or magnetic dipoles and resonant circuits for

coupling. Typical dipole moments and transition frequencies are included. Systems are shown

in order of decreasing dipole strength. The frequency ranges are indicative of typical transition

frequencies, but values outside the given ranges are possible.

and their typical strengths are summarized in Table I. We now turn to the important

question of how these building blocks interact with each other, and how to interconnect

them.

III. DIFFERENT BUSES

As we already mentioned in the introduction, the exchange of information between dif-

ferent qubits can be accomplished via direct coupling, or via a mediator systems which we

termed the “bus”. We now discuss these possibilities in more detail.
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a) b)

c) d)

FIG. 3. (a) Qubits interconnected via electromagnetic interaction in free space (b) Harmonic

oscillator bus between electrical dipoles (c) A capacitive electrostatic bus between electrical dipoles

(d) A resonant electrical circuit bus.

A. Free Space Coupling

The simplest way in which two physically distinct qubits can be interconnected is by

bringing them close to each other and allowing them to interact through free space, see

Fig. 3a. The quantum dipole-dipole interaction, for dipoles µ1 and µ2, separated by ~r, can

be derived from the classical expression U = ~µ1 · ~µ2/r
3 − 3( ~µ1 · r)( ~µ2 · r)/r5, by expressing

the dipoles in terms of Pauli spin operators [66]. If the dipole quantization axis, defined

by an externally applied field, is along ~r, then this expression is of the form σ
(1)
+ σ

(2)
− +

σ
(1)
− σ

(2)
+ −2σ

(1)
z σ

(2)
z , where σ

(1,2)
±,z are the usual Pauli operators. This is applicable to particles

carrying spin, but not to the interaction between many of the systems mentioned in Sec. II.

For example, the electrostatic interaction between two charged harmonic oscillators is of

the form a†1a2 + a1a
†
2 [45, 67], the interaction between atoms in the dipole approximation

is σ
(1)
+ σ

(2)
− + σ

(1)
− σ

(2)
+ [68], in a charge qubit the effective electric dipole is geometrically

constrained along one particular direction, and likewise for the magnetic moment in a flux
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qubit. Thus, in these cases the interaction can be written as

H = ~ g
(
σ

(1)
+ σ

(2)
− + σ

(1)
− σ

(2)
+

)
(1)

where g is the coupling strength. The interpretation of this interaction is straightforward in

the sense that it describes processes where the energy of the excitation taken out one system

via the operator σ
(i)
− is injected into the other system via σ

(j)
+ .

A rather convenient way to initiate and terminate information transfer between the two

qubits is usually by tuning their frequencies, ω1, ω2 into and out of resonance. The dura-

tion of a swap operation in this case is τswap = π/g. To generate entanglement between

both qubits, we may initialize them in the state |1〉|0〉 and let the coupling act for τswap/2

generating a Bell state of the form (|0〉|1〉+ |1〉|0〉)/
√

2 [69].

Free-space coupling has the advantage of simplicity, but, as we discussed in the previous

section, it requires that the different qubits be brought in close proximity to each other.

This is not always feasible and can pose limitations to the scalability of the hybrid device.

Usually stronger and more easily scalable coupling can be obtained by allowing the qubits

to interact through an engineered bus.

B. Harmonic Oscillator

The bus is in many cases a harmonic oscillator, as shown on Fig. 3b,d. Here we represent

the bus oscillator as a lumped element circuit, but it can be a standing wave in a cavity [18],

or even a mode of a small size mechanical oscillator. The dipole-field interaction is −E µel

for electric dipoles and −B µmg for magnetic dipoles. If the dipoles are expressed in terms

of Pauli operators, and the voltage and current of the oscillator in terms of creation and

annihilation operators, these interactions take the form

H = ~ g1

(
σ

(1)
+ abus + σ

(1)
− a†bus

)
+ ~ g2

(
σ

(2)
+ abus + σ

(2)
− a†bus

)
(2)

where the coupling strengths g1, g2 are determined by the treatment leading to Eqs. 13,14.

The bus can can be detuned from the qubit resonance frequency by ∆ = ωbus−ω1 (ω1 = ω2).

This offers one more tunable element in the device, which comes with added flexibility but

also higher complexity and potentially additional sources of noise.
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In some cases, the qubits can be very strongly coupled to the oscillator. This allows

operation of the bus in the dispersive regime, ∆ � g, where the detuning between qubits

and oscillator is far larger than the coupling rate. The main advantage here, is that the

resonator mode is only weakly populated while information is transferred through the bus,

thus reducing the sensitivity of the hybrid system to decoherence in the bus. Nevertheless,

strong coupling is not always feasible, or it can come at the expense of increased decoherence

on the qubits themselves (see Sec. V), and operation of the bus in the regime of small or

zero detuning can be preferable.

For resonant coupling and g1 = g2 = g, the time for a swap operation is π/
√

2g, while for

dispersive coupling τswap = π∆/2g2 and τBell = τswap/2. In general, in the resonant case there

exists no point in time at which the two qubits are in a Bell state, since some population is

always found in the bus. This can be solved by choosing ‘magic’ detunings, for which the

population in the bus vanishes when the qubits are in a Bell state [70, 71]. In general the

same is true of the dispersive system as well, but in this case the probability amplitude in

the bus is only of order g/∆ (i.e. the population is g2/∆2). Thus, in principle a dispersive

bus can produce Bell states and full population exchange to arbitrary fidelity, for arbitrary

detuning.

C. Far Off-Resonant Oscillator

There is one more form of bus which is worth mentioning due to its wide applicability,

the far-dispersive capacitive bus, see Fig. 3c. This type of bus has been proposed for in-

terconnecting electrons trapped in Penning traps to ions [15], Rydberg atoms to each other

[39], trapped ions to superconducting charge qubits [72], electrons trapped in Penning traps

to each other [73, 74], trapped ions in Paul traps to each other [75] and charged nanobeams

[76]. The capacitive bus falls in-between the two categories mentioned above. It can be

viewed as a far off-resonant limit of the harmonic oscillator bus. But it can also be viewed

as a modification of the electrostatic free-space bus in which the boundary conditions of

free space have been modified to optimize the coupling strength. It provides a convenient

solution for situations in which a resonant oscillator bus cannot be used, for example if the

coupling rate of the dipoles to the bus cannot be made much stronger than the decoherence

rate of the bus itself (i.e. if the so-called “strong coupling” regime cannot be reached). In
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practice, the latter means that at frequencies below the GHz range a capacitive bus might

be the best option, since the thermal population in the bus will be rather high, even at

dilution refrigerator temperatures.

D. Parametric Frequency Conversion

In many situations, the different qubits are not resonant with each other, or with the

bus, and are not sufficiently tunable to achieve fast and switchable quantum state transfer

between the two. In these situations, a tunable coupling element offers the solution of

coupling via parametric frequency conversion between the different quantum stages [77].

During this process, the non-linear coupling element is classically driven at the difference

frequency δω = ω1 − ω2 between the two non-resonant quantum modes, giving rise to

parametric coupling which oscillates at the difference frequency g(t) = g0 cos(δω t). This

effect is more clear in the interaction picture. We consider two non-resonant oscillators,

coupled with a time dependent strength

H = ~ω1a
†
1a1 + ~ω2a

†
2a2 + ~ g0 cos(δω t)

(
a†1a2 + a1a

†
2

)
. (3)

In the interaction picture, this Hamiltonian can be shown to be [78]

H = ~ g0 cos(δω t)
(
ei(ω1−ω2)ta†1a2 + e−i(ω1−ω2)ta1a

†
2

)
. (4)

In the rotating wave approximation, the interaction term survives under the resonance con-

dition δω = ω1 − ω2, and population exchange between the two oscillators occurs at a rate

g0/2, The factor 1/2 can be understood classically as the result of creating two equal side-

bands on the first oscillator, of which only one couples to the second one. The above can

also be seen by solving the Heisenberg equations of motion for the parametrically driven

system in the rotating wave approximation [77]. Parametric frequency conversion results in

full state exchange between two off-resonant systems with, in principle, no added noise. It

can be viewed as a process in which a classical drive field contributes or absorbs photons at

the energy difference ~ δω between the two modes, so that energy conservation is satisfied

during the state transfer.
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IV. SUMMARY OF INTERACTIONS

In most applications of atomic physics, the experimental control parameters for the atomic

systems are electromagnetic. Thus, it is not surprising that in hybrid devices where one

component is an atomic system, the interactions between the different components are of

electromagnetic nature. These can be electric or magnetic, depending on whether the quan-

tum systems in question carry electric charge, electric dipole moment, or magnetic dipole

moment. In the most general cases, it can be instructive -or even necessary- to obtain the

strength of the interaction between the quantum systems by integrating the electromag-

netic energy density over an appropriate volume of the device. Nevertheless, in most cases,

the quantum systems can be viewed as elementary dipoles or as electromagnetic harmonic

oscillators. The interaction strengths are then given by the usual expressions for dipole-

dipole and dipole-field interactions. In what follows, we review the basic interactions that

one is likely to encounter in hybrid devices. We try to emphasize a common treatment

between different systems, as well as the differences between them. We show that typical

electric coupling strengths are significantly stronger than magnetic coupling strengths. We

also summarize the coupling of elementary dipoles to resonators and emphasize the role of

characteristic impedance on the coupling rates.

A. Interaction Strength and Characteristic Impedance

The coupling rate between different systems depends on the strength of the interaction

and on the characteristic impedances of the systems. Characteristic impedance turns out to

be a useful concept in hybrid system considerations. Classically, the characteristic impedance

of a harmonic oscillator describes how fast its energy responds to an external driving force

of a given amplitude. It also describes the relative magnitude of the values of the conju-

gate variables for a given energy in the system. Quantum mechanically, the characteristic

impedance determines the relative magnitude of quantum fluctuations of the conjugate vari-

ables. For example, a large impedance LC resonator has large voltage fluctuations and small

current fluctuations. It is instructive to see this both classically and quantum mechanically

in a simple coupled mechanical oscillator model. The example can easily be translated to

other systems, such as electrical circuits.
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1. Classical coupled oscillators

To see this, consider two harmonic oscillators, with masses m1 and m2, each one in a

harmonic potential with frequency ω. The interaction strength between the oscillators is

κ, i.e. for displacements x1, x2 from equilibrium, the interaction energy is U = κx1 x2.

The characteristic (mechanical) impedance, Zi, i = 1, 2, for each oscillator determines the

relative magnitude of the conjugate variable oscillations Zi = pi,max/xi,max = mi ω. Now, if a

certain amount of energy is stored in each of the two oscillators, their respective oscillation

amplitudes are related by x1,max

x2,max
=
√

Z2

Z1
=
√

m2

m1
., i.e. the impedance mismatch determines

the relative scale of amplitudes corresponding to the same amount of energy.

It follows from the form of the interaction energy, that the force on the second oscillator

when the first is displaced by x1 is −κx1. Consequently, if all the energy of the system is

stored momentarily in the first oscillator and it oscillates with x1,max, the second oscillator is

being driven by a force of amplitude f2,1 = κx1,max = κ
√

Z2

Z1
x2,max, where in the second step

we expressed the force in terms of the maximal amplitude, x2,max, of the second oscillator.

When it is driven by this force, the oscillation amplitude of the second oscillator will

grow at a rate f2,1

2Z2
= κ

2m2 ω

√
Z2

Z1
x2,max. Since x2,max is the amplitude of the second oscillator

when all the initial energy has been transferred it, the coupling rate will be, up to numerical

factors,
κ

2m2 ω

√
Z2

Z1

. (5)

The interpretation of this process is quite simple: the strength of the interaction, and the

characteristic impedance Z2, set a natural time scale κ
2Z2

for how long it takes to transfer

energy to the second oscillator. The ratio of characteristic impedances describes the oscil-

lation amplitude imbalance that has to be bridged for energy transfer to take place. It is

straightforward to carry out a similar treatment in the case of non-mechanical oscillators.

2. Quantum coupled oscillators

To see the above results formally, the oscillator variables can be expressed in terms of

second quantization operators. Then, by introducing the second quantization expressions

xi =
√

~
2Zi

(
a†i + ai

)
, the interaction term in the Hamiltonian becomes (in the rotating wave
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approximation)

U =
~κ

2
√
Z1 Z2

(
a†1a2 + a1a

†
2

)
. (6)

The prefactor in this expression corresponds to the expression in Eq. 5, motivated by our

classical discussion, but written in this form, the symmetry between the oscillator character-

istic impedances is evident. The ratio κ/
√
Z1 Z2 describes the relative scale of the coupling

interaction and the individual (uncoupled) oscillator energies.

The above example applies equally well to coupled electrical oscillators. The methods for

canonical quantization of such circuits will not be covered here, the interested reader can refer

to [79]. Without focusing on a particular topology, we consider two coupled LC oscillators,

for which the interaction energy, expressed in canonical charge variables, qi, i = 1, 2, is

U = κq1q2. Then, the result in Eq. 6 holds, with the impedances Z1, Z2 corresponding to

the characteristic impedances of the two electrical oscillators. It is instructive to contrast

this example with that of two electrical oscillators coupled by an inductive term of the

form U = λΦ1Φ2, with Φi denoting the node flux variables [79]. Then the corresponding

interaction term becomes

U =
~λ
√
Z1 Z2

2
i
(
a†1a2 + a1a

†
2

)
. (7)

We see that the characteristic impedance of the resonator plays a different role in the cases of

capacitive (electric) and inductive (magnetic) coupling. We will see this again in Sec. IV D,

and also in Sec. III B, where we will discuss how it determines the requirements for impedance

matching of a quantum bus to different dipoles.

3. Mechanical oscillators as dipoles

We already mentioned that mechanical oscillators carrying a charge or a magnetic moment

interact electromagnetically as if they carry an effective dipole moment. It is useful to adopt

this view in order to put different systems on a similar footing and compare their coupling

strengths to each other. Before characterizing the strength of different interactions, we

discuss this equivalence.

First we consider the case of a charged oscillator, carrying charge q. When the oscillator

is displaced from equilibrium by x, it interacts with electric fields as Uel = −q xE. This
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suggests that the electric dipole moment be µ = q x. Quantum mechanically, the dipole

operator can be written µ = q
√

~
2mω

(
a† + a

)
, where m is the mass and ω the frequency of

the oscillator. The electric dipole moment of the harmonic oscillator is then

µel = q

√
~

2mω
. (8)

It is straightforward to extend this treatment to magnetized oscillators, for example a

nanobeam with a magentized tip [53, 59]. This situation is not completely analogous to

that of a charged oscillator, because a magnetized object produces around it a dipole field,

Bosc ∼ µ/r3, where µ is the dipole moment of the magnetized tip, and r the distance from

the tip. The result is that an elementary dipole µB a distance r away from the magnetized tip

interacts with the oscillating part of the magnetic field, and the interaction is U = µB
∂B
∂r
x.

From this, it is straightforward to see that quantum-mechanically, the magnetized oscillator

is equivalent to a magnetic dipole of strength µeff = µ 3x0

r
, as already mentioned in section

II.

We now proceed to discuss the typical interaction strengths between different systems.

B. Dipole-Dipole Interaction

As we already saw, the quantum systems considered for hybrid applications typically

carry an electrical dipole moment, or a magnetic dipole moment. In some situations dipole-

dipole interactions in free space can be utilized to couple such systems with each other.

An important difference between the two is that typical magnetic interaction strengths are

weaker than electric interaction strengths.

For magnetic dipoles, typical magnetic moments can be expressed in terms of Bohr mag-

netons µB (see Table I). The scale of the interaction strength is

Umg =
µ0µ

2
B

2πr3
. (9)

At a distance of 1 µm, this is a weak 2π×26 mHz.

For electrical dipoles, the coupling is stronger. Typical dipole moments can be expressed
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in units of Debye. The interaction strength is

Uel =
µ2

el

2πε0r3
, (10)

and we choose µel = e a0/2, which is close to 1 D. At a distance of 1 µm, the interaction

strength is 2π×488 Hz.

It is interesting, but not surprising, that for the above choice of typical dipole strengths:

Umg

Uel

= α2 , (11)

where α is the fine structure constant. Here, it is important to appreciate that the weak-

ness of magnetic interactions is not necessarily a disadvantage of magnetic dipole systems.

The reduced coupling strength comes with the potential advantage of higher immunity to

environmental decoherence. In fact, elementary magnetic dipoles, such as nuclear spins in

diamond-NV centers, can offer the longest lived solid-state qubit candidates, provided that

the dominant decoherence mechanisms are electromagnetic in nature, and that the nuclear

spin environment is sufficiently well controlled [63].

C. Electrical Dipole Capacitive Bus

The coupling strength between two electrical dipoles can be increased over the coupling

strength achieved in free space by placing a coupling electrode between them [15, 39, 73, 75].

This electrode acts as the quantum bus connecting the two dipoles. More specifically, each

dipole induces image charges in the coupling wire and, in this way, interacts electrostatically

with the other dipole. The image charges are distributed over the length of the wire and

as a result the strength of the interaction is inversely proportional to the capacitance of the

coupling electrode to ground. This system is well described by the circuit shown in Fig. 3c).

The interaction strength is given by

Uel =
µ2

el

D2
effC

(12)

where for simplicity we have chosen the same dipole moments, µel, and effective distances,

Deff , on both sides of the bus. The effective distance Deff is related to the physical distance
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between the electrodes which pick up the electrical signal by a geometric factor of order

unity [80, 81]. C is the parasitic capacitance of the bus to ground.

The capacitive bus in effect shortens the distance between the electrical dipoles leading to

1/r instead of the 1/r3 scaling of free-space coupling. In many situations [75], the parasitic

capacitance can be made as small as a few fF for length of a few hundred micrometers.

A typical coupling strength at effective distance Deff = 1µm, µel = e a0/2, and C = 1 fF

is 2π×27 Hz. The capacitive bus offers an enhancement to free-space coupling, but if the

qubit frequencies are high enough that a resonator can be used to transfer information (see

Sec. III B), the latter can provide higher coupling rates and increased protection against

noise. We now look at the interaction strengths obtained in this case.

D. Dipole-Resonator Interaction

A rather fruitful approach is to couple an electric or magnetic dipole to an electromag-

netic oscillator, which plays the role of a bus between distant dipoles, as in the example of

superconducting cQED [18]. This approach offers a combination of high coupling strength

and filtering of unwanted noise, with the potential of scalability to large numbers of devices.

We now discuss how individual dipoles couple to a resonator. The magnitudes of quantum

zero point voltage and current fluctuations in the oscillator satisfy Z = V0/I0, where Z is

The characteristic impedance of the oscillator. Voltage fluctuations can couple to electrical

dipoles via an electric field, and current fluctuations, can couple to magnetic dipoles via a

magnetic field, and the characteristic impedance determines the magnitude of these coupling

strengths.

To obtain the interaction of electrical oscillators with elementary dipoles, we consider an

oscillator which is either producing an electric field E = V/Deff between the electrodes of

some capacitive configuration, or a magnetic field B = µ0 I/D
′
eff near some inductive config-

uration. Here Deff and D′eff are effective dimensions of the electrode structures producing the

coupling fields. The electrical oscillator can be a lumped element circuit, or a standing-wave

transmission line resonator, with the transmission line impedance Z.

The interaction strength for an electric dipole is µelE0, which gives

Uel =
V0µel

Deff

=
ω µel

Deff

√
~Z
2
, (13)
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where ω is the oscillator frequency and V0 describes the amplitude of quantum voltage

fluctuations. Likewise, for a magnetic dipole the strength is µmgB0, or

Umg = B0µmg =
ω µmg

D′eff

√
~

2Z
. (14)

The interaction strength is proportional to the resonator frequency, due to the scaling of

zero point current and voltage fluctuations with frequency.

It is straightforward to see that for the choice of dipoles used in the previous section, the

strengths of the electric and magnetic coupling satisfy

Umg

Uel

= α
Z0

Z

Deff

D′eff

(15)

where Z0 ≈ 377 Ω is the impedance of free space. So we see that the optimal parameters of

an oscillator bus are determined by the type of dipole one couples to: electric dipoles are

favored by large impedances, whereas magnetic dipoles by small impedances. The coupling

between an oscillator and a magnetic dipole will gain from small impedances as 1/
√
Z,

while electric coupling will gain from large impedances as
√
Z. To get a feeling for typical

values, at effective distances of 1 µm, impedance of 50 Ω, frequency 2π×5 GHz, the coupling

strength is 2π×20 kHz for an electric dipole of e a0/2, and 2π×560 Hz for a magnetic dipole

of µB.

It is useful to also summarize the equivalent results for transmission line resonators.

A finite length of an appropriately terminated transmission line forms a one-dimensional

electromagnetic cavity, and can act as an electrical resonator. In this case, the quantum

fluctuations of voltage get reduced as 1/
√
l, with the length, l, of the resonator [82]. A

λ/4 transmission line, the other side of which is shorted, behaves as a lumped-element LC

resonator with characteristic impedance 4Z/π, where Z is the transmission line characteristic

impedance. In general, the open end of a length nλ/4, n = 1, 2, ... of transmission line with

impedance Z, of which the far end is shorted (n odd) or an open circuit (n even), behaves

as an LC resonator with characteristic impedance 4Z/(nπ) [83].

The above properties of the harmonic oscillator bus, offer guidelines as to what the op-

timal impedance is. So long as one stays within the electrical dipole or magnetic dipole ap-

proximation, then electrical dipoles couple stronger the higher the characteristic impedance
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is, and inversely magnetic dipoles benefit from small impedances. However, in the case

where a bus is used to mediate the coupling of an electric dipole to a magnetic dipole, see

Sec. III B, there exists an optimal impedance at which the coupling rate of the bus to each of

the two dipoles is the same. If the oscillator impedance deviates from this value, there will

be no condition under which full population transfer can be achieved between the dipoles,

unless the bus is used dispersively. From Eq. 15, we see that the optimal bus impedance

is Zopt = αZ0
Deffµel

D′
effµmg

, where as we mentioned before, Deff and D′eff are effective distances

for the electrodes that couple to the dipoles. [84]. This feature of the harmonic oscillator

bus is, in a way, a generalized form of impedance matching requirement, and it is related to

the fact that impedance is a measure of the values of the conjugate variables in a harmonic

oscillator.

E. Trapped Ion and Mechanical Oscillator

In light of developments in merging nanomechanics with other technologies [54, 85], cou-

pling of atomic systems to mechanical oscillators could become promising, e.g. if the me-

chanical system acts as a transducer from the ion motion to electrical signals. We discuss

now a trapped ion (or a small ion string) coupled to a charged nanobeam. We assume that

the ion is trapped a distance d from the beam and interacts via the Coulomb interaction

energy. One might reason that the coupling can be boosted to arbitrary values by increas-

ing the charge Q on the nanobeam. However, if we continue to charge the nanobeam, the

ion resonance frequency will increase. In the limit that all the restoring force on the ion

comes from the charge of the nanobeam, the ion frequency is given by the curvature of the

electrostatic potential of the oscillator at the ion position 1
2πε0

eQ
d3 . Inserting this equality in

Eq. 6 and assuming resonance, i.e. ωb = ωi, we find that for the coupling constant g

g =
ω

2

√
mi

mb

, (16)

where mi and mb refer to the ion and nanobeam mass, respectively. Referring back to our

discussion at the beginning of this section, this corresponds to setting κ = mω2 in Eq. 6.

For a typical mass of a nanobeam of 0.1 pg, using a heavy ion, such as 199Hg+ and a large

frequency ω = 2π× 10 MHz, we arrive a coupling on the order of 2π× 20 Hz. We will later
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FIG. 4. A trapped ion (right) with charge e interacting with a charged nanobeam with charge Q

and its image charge −Q induced in a ground plane.

discuss two proposals in this direction.

In Eq. 16 we assumed that both the coupling as well as the confinement of the ion come

from the charge on the nanobeam. We call the coupling deduced under this condition the

natural coupling which can be only overcome by introducing an anti-confining potential for

the ion. An experimentally attractive way to induce anti-confinement is by using image

charges induced in an electrode near the nanobeam (see Fig. 4). Such an electrode placed

behind the nanobeam acts as an additional ground plane and the negative image charge

nearly compensates the force of the beam on the ion, while at the same time doubling the

coupling.

The interaction energy is now U = eQ
4πε0

(
1

|d−xi−xb|
− 1
|d−xi−xb′ |

)
. Here xi and xb are the

displacements of the ion and the nanobeam from their respective equilibrium positions,

and xb′ = −xb is the displacement of the image charge, −Q. For displacements xi, xb,

much smaller than the distance, d, of the ion to the beam, this can be expanded to give

an interaction term U = − e
4πε0

(
Q
d3xixb + (−Q)

d3 xixb′

)
. Using xb′ = −xb, we see that the

interaction of the ion with the nanobeam, ∂U
∂xb

, doubles while the influence of the interaction

potential on the ion confining potential (the trapping potential), ∂2U
∂x2

i
, cancels. Thus, the

coupling can be increased up to the point where one of the assumptions fails, for instance,

when nanobeam is pulled so strongly towards the ground plane that it sticks to it or when

the force on the ion is not fully canceled [86].
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V. DECOHERENCE

To assess the usefulness of a hybrid device, one needs to understand what the constituent

qubits couple to, and how strongly. The main challenge lies in maximizing the coupling

between the qubits, while maintaining minimal coupling to unwanted environmental degrees

of freedom.

This can be a demanding task, since very often the close proximity of physically different

qubits to each other or to a bus causes additional decoherence. For example, an electrical

dipole brought close to a metal surface will experience increased electric field noise of the

type encountered in ion trap experiments [49], and the noise is likely to be also present near

non-metallic surfaces [87]. This type of noise will change the energy of the dipole at a rate

γ1 =
SE(ω)µ2

el

2~2 , where SE(ω) is the electric field noise spectral density at the dipole transition

frequency.

A second type of decoherence occurs if the energy splitting of the dipole states depend

on static fields, for example through a static Stark shift. For example, for a system with

a linear Stark shift with strength ∂ω
∂E

, the presence of 1/f electric field noise described by

SE = E2
0/f , causes dephasing at a rate γϕ ≈ ∂ω

∂E
E0. For a quadratic Stark shift, the

dephasing rate is γϕ ≈ ∂2ω
∂E2E

2
0 . Effects like this need to be considered in the design and

implementation stage of hybrid quantum systems. As we will discuss in the next section, all

possible hybrid quantum systems face limitations and challenges related to environmentally

caused decoherence.

The first of the decoherence processes in the above example, causes energy exchange

between the quantum system and the enviroment, i.e. dissipation and heating, and is often

summarized as energy relaxation and referred to as a T1 process. In the second example

there is no energy exchange, but the phase evolution of superpositions of energy eigenstates

depends on the enviroment, and consequently the phase information of the superposition is

lost. This latter process is often referred to as pure dephasing, or a Tϕ process. Note that

a pure energy relaxation mechanism will by itself cause dephasing at rate 1
2T1

, so that the

total, or effective, dephasing time constant, T2, measured in experiments will be the sum of

the pure phase damping and the phase damping caused by the energy relaxation processes:

1

T2

=
1

2T1

+
1

Tϕ
. (17)
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.

The effect of a dissipative environment on a quantum system is described very well in

the master equation formalism, where the time evolution of the density matrix acquires

non-unitary components. We adopt this description here. We model the enviroment as a

bosonic bath with mean thermal energy kT , and some additional dephasing mechanisms .

The quantum system interacts with a modes b of the bath via an interaction of the form

κ(a†b+ ab†) which describes energy relaxation. A pure dephasing process can be described

mathematically as a projection of the system onto the energy eigebasis. Such an energy

measurement can be modeled by the interaction term κ′a†a
(
b′ + b′†

)
where the environment

mode, b′, is modeled, for instance, as a single oscillator acting as a measurement device.

Note that in the context of quantum information, decoherence is meaningfully applied to

individual quantum systems by taking the average over many repetitions of particular real-

izations of the quantum dynamics. Using this approach, we can introduce a density matrix

formalism for individual quantum systems and arrive at the following equations of motion

for the reduced density matrix (i.e. after the environmental degrees of freedom have been

traced out) [78, 88]:

∂tρ = − i
~

[ρ, H]

+
γ

2
(n̄+ 1)(2aρa† − a†aρ− ρa†a) +

γ

2
n̄(2a†ρa− aa†ρ− ρaa†)

+
γϕ
2

(2a†aρa†a− a†aa†aρ− ρa†aa†a) . (18)

The first term describes the coherent evolution of the density matrix, fully equivalent to

the Schrödinger equation, the second line energy relaxation including the inevitable phase

damping (the T1 process) and the last term pure phase damping γϕ with time constant Tϕ.

Before getting into the specifics of different quantum systems, it is useful to discuss in

qualitative terms how the different sources of dissipation affect the behavior of a hybrid

system. This can be illustrated by the elementary building blocks of Fig. 3(a), 3(b). A

useful measure of the effect of dissipation is the fidelity of an operation, defined as F =

tr
(√

ρ1/2ρidealρ1/2
)

=
√
〈Ψideal |ρ|Ψideal〉, where ρ and ρideal = |Ψideal〉〈Ψideal| are the density

matrices of the actual and ideal final quantum states, and tr(A) is the trace of operator A

[89]. We are interested in the fidelity of a swap operation in the presence of decoherence

acting both on the qubits as well as on the bus. A source of decoherence with rate γ, acting
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on one component of a quantum system, during some operation with duration τ , will cause

loss of fidelity which is proportional to γ τ , if γ τ � 1. A decoherence source acting on

one component, e.g. on one qubit, causes loss of fidelity which depends strongly on the

time averaged population amplitude of that component. This implies, for example, that

the infidelity of a swap operation caused by a lossy bus can be limited by using the bus

off-resonantly. In the case of environmental thermal (sometimes called Brownian) noise, the

effect of noise is proportional to the mean thermal occupation number of the mode, nth.

Then, the infidelity is proportional to γ τ nth. This illustrates one of the main advantages

of operating quantum devices at mK temperatures and GHz frequencies, where thermal

environmental effects cause little influence to quantum coherent device operation.

It is straightforward to numerically solve the master equation for a swap operation and

extract the typical scaling of fidelities using available open quantum system simulation

packages such as qutip [90]. We find that the swap fidelity decreases with the strength of

decoherence, Γ, as dF
d(Γ τswap)

= −r, where Γ is either nthγ or γϕ. By looking at states of

the form a |000〉 + b |100〉, where the tensor products are understood to refer to |qubit1〉 ⊗

|bus〉 ⊗ |qubit2〉, we find a value of r which varies between 0.2 and 0.5 depending on the

source of dissipation, and the quantum state being swapped. For example pure dephasing

will influence the state 1√
2

(|000〉+ |100〉) stronger than it will influence the state |100〉.

VI. SPECIFIC DIRECTIONS IN QUANTUM HYBRID SYSTEMS

Here we look at specific experimental proposals. We cover schemes proposed to couple

trapped ions to radio-frequency electrical circuits [15], trapped ions to microwave circuits

[16], trapped ions to charge qubits [72], Rydberg atoms to each other via superconducting

microwave electrical circuits [39], polar molecules to superconducting microwave circuits

[42, 43], and trapped ions to mechanical oscillators [91, 92].

The idea of coupling individual atoms, or electrons, to solid-state devices is significantly

older than modern, quantum-information inspired hybrid devices. Single electrons (or ions)

in Penning traps, coupled to lumped-element electrical resonators have formed the basis

for a long series of high-precision measurements [93]. In these experiments, the role of the

resonator has been to cool the trapped particle to the temperature of a cryogenic heat bath,

and to perform impedance matching between the high characteristic impedance element on
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the trapped-particle side, and a low characteristic impedance solid-state amplifier [94]. The

successful application of laser cooling techniques to atomic systems caused a significant shift

in the way this basic system was viewed. It was realized that the roles of a trapped ion and

an electrical circuit could be reversed, allowing the trapped ion to act as a “refrigerator” for

the resonant circuit, as well as an increased sensitivity readout device [15]. In the modern

context of quantum information science, a variety of specific ideas for quantum hybrid devices

have emerged. We now discuss specific proposals in this direction.

A. Trapped Ions and LC Resonators

The idea here is to couple the motion of a trapped ion to an electrical resonator, and

to use the ion to laser cool the oscillator [15]. Although this experiment does not hold the

prospect of becoming a useful as a hybrid quantum platform, it has the advantage that it

can be realized with already established technology.

The experiments can be realized with single ions or small ion crystals trapped in a har-

monic RF-trap. The leads of a tank circuit are attached to two trap electdodes and couple

the circuit to the ion motion (see Fig. 5). The coupling rate follows from Eqs. 8,13, and can

be seen to be g = ω
2

√
e2 L
mD2

eff
= ω

2

√
Z
Zion

, where L is the inductance of the resonator, Z the

resonator characteristic impedance, Lion =
mD2

eff

e2
is the kinetic inductance of the ion and Zion

the characteristic impedance corresponding to the ion equivalent circuit in this setting [15],

m is the mass of the ion, Deff the effective distance for the electrodes to which the ion motion

couples, and ω the frequency of the ion and the resonator [95]. For an effective distance

Deff = 50 µm, inductance L = 10 mH, capacitance C ≈ 2.5 pF, and a single 40Ca+ion with

a trap frequency of 2π × 1 MHz, the coupling strength is g ≈ 2π × 600 Hz. We note that

for these settings, Lion ≈ 6.5 kH, and Zion ≈ 41 GΩ. If ion strings of N ions are used, the

coupling rate to the center of mass mode increases as
√
N , and for 10 ions the coupling rate

can be increased to approximately 2π × 2.0 kHz.

To operate in the strong coupling regime, the damping constant γ of the tank circuit

needs to be smaller than g. At frequencies in the MHz range, quality factors approaching

50,000, corresponding to γ ≈ 126 s−1, have been reported for superconducting coils [96], and

the strong coupling regime is within reach. In the strong coupling regime, we expect that

the resonant mode of the tank circuit can be cooled significantly if brought into resonance
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FIG. 5. Schematics of a tank circuit (center) coupled to a trapped ion (right) and the enviroment

(left).

with ultra-cold ions. For the parameters of a 10 ion string given above and using Tenv = 4 K,

the resonant mode of the tank circuit can be cooled to 63 mK, a factor of more than 60

below ambient.

Lastly, we estimate the prospects of entangling the ion motion with the superconducting

circuit. The main impediment towards this goal, is that the mean occupation number of the

LC oscillator in thermal equilibrium with the 4 K bath, is on the order of kTenv/~ω ≈ 80 000.

Therefore, the resonant circuit picks up one quantum every ~ω/γenvkTenv ≈ 0.2 µs despite

its high quality factor. By increasing the trap frequency to 10 MHz, and moving the ion

closer to the pick-up electrodes to achieve an effective distance of 25µm, the coupling rate

can be increased to g ≈ 2π × 39.8 kHz for 10 ions. Additionally lowering the ambient

temperature to 50 mK, and working with a quality factor on the order of 3× 105 would be

sufficient to allow cooling of the resonant mode of the tank circuit to a mean occupation

number of nthγπ
2g
≈0.14 photons. If the resonator mode is cooled to this low occupation

number, the resonator and a second 10 ion string can subsequently be prepared in a Bell

state 1√
2

(|0〉|1〉+ |1〉|0〉) with fidelity of 90%.

B. Coupling Ions via Parametric Frequency Conversion

The range of motional frequencies of trapped ions can be insufficient for coupling to a

wide variety of electrical oscillators, for instance to microwave resonators, but parametric

frequency conversion schemes can remove this limitation, as discussed in [15, 16]. Here, we

outline the details of the latter of these two proposals. The basic setup of this scheme is very
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similar to the one described above, see Fig. 5. An ion of mass m, is trapped in a trap with

frequency ω between coupling electrodes with effective distance Deff . The parametric action

in this case comes from the resonator capacitance which is variable. If the capacitance is

modulated as C = C0 (1 + η sin(ν t)), with modulation index η at the difference frequency

ν = ωLC − ω, the coupling strength, g, becomes time dependent, with modulation index

η. Then, the parametric coupling strength which the authors of [16] derive becomes, in our

notation, 1
3
η ~ωLCe

Deff

√
ZLC

mω
.

In order to physically achieve the modulated capacitor with desired parameters, the

authors propose using a microfabricated capacitor based on piezoelectric bulk acoustic wave

(BAW) resonators. If one plate of the capacitor is constructed out of one side of a BAW

responator, then by driving the resonator the capacitor spacing oscillates and the capacitance

is modulated. As typical experimental parameters, the authors use a coil of inductance

440 nH, and total capacitance of the resonant circuit C0 ≈46 fF, resonating at 2π× 1 GHz,

and sinusoidally modulated at an index of 0.3. Then for a 9Be+ ion with effective distance

Deff = 100µm and secular frequency 2π×1 MHz, the parametric coupling rate is 2π×60 kHz.

With this coupling rate, the internal state of the ion and the state of the resonator can be

swapped with fidelity higher than 95%. If this is realized, it will allow the toolbox of

trapped-ion coherent control to be applied to the resonator. For example, as the authors

discuss, non-classical states can be prepared in the resonant circuit by mapping states of

the ion, different resonators can be entangled with each other, phase gates can be realized

between distant ions, and quantum metrology of electromagnetic fields in the microwace

regime become possible.

Potential challenges to implementing this type of experiment are operation of the ion trap

and the piezoelectric resonator in a dilution refridgerator environment, which is required to

achieve the high quality factor and low thermal occupation of the resonator modes. Addi-

tional problems can arise from off-resonant excitation of the resonator due to the (classical)

parametric drive of the BAW at the frequency ν which is close to ωLC. One important

consideration here, is that the electrical signal induced by the ion has to be larger than

1/f charge noise in the pick-up electrodes. Such noise can arise from the surfaces of the

coupling electrodes, and their intefaces with dielectric materials. The ion signal is of order

2 × 10−4 e. This is comparable, for instance, to the 1/f charge noise of a single electron

transistor (SET), which optimized for small charge detection, at 1 MHz, over a bandwidth
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of 100 kHz [97]. The value for charge noise at 1 MHz for a BAW is currently not known.

One open question in this scheme is the possibility of extending the frequency range of BAW

resonators to the several GHz range where state-of-the-art superconducting charge qubits

currently operate.

C. Rydberg Atoms and Superconducting cQED

Here, atoms excited to high principal quantum number Rydberg states are each located

above one coupling electrode, and the different electrodes are connected to each other, see

Fig. 6 [39]. The connection can be made via a capacitive bus, or via a standing-wave

transmission line resonator (cf. Sec. III). One significant advantage of this type of scheme

is the large dipole moment of the atoms, which translates to high coupling strengths both

for a capacititve and a resonant bus. Another important feature of this scheme is that

typical transition frequencies between Rydberg states are in the microwave to millimeter

wave regime. This implies high coupling strength to an electrical resonator bus, as discussed

in section III. For the proposal of Sorensen et al. [39] a trapping height h = 10µm implies an

effective distance Deff ≈ 14µm and coupling rates 2 π×3 MHz, between the Rydberg states

|N = 49, s〉, |N = 50, pz〉. The atoms can be seperated by distances of several millimeters.

Experimental efforts to construct superconducting atom trap chips, suitable for this type

of experiment [98], as well as the first steps in observing the interaction of thermal beams of

Rydberg atoms with coplanar waveguide resonators [99] are in progress (see Fig. 7). On the

technical side, the most significant challenge in this type of scheme remains to reliably trap

Rydberg atoms with long storage times at a distance of a few micrometers from electrode

surfaces. This challenge can potentially be overcome by trapping Rydberg ions in radio-

frequency traps, at the additional expense of using lower light wavelengths associated with

Rydberg ion transitions. In addition, it is not known whether electronic noise arising from

metallic and insulating materials in the vicinity of the atoms will be enhanced by the laser

fields used for trapping and manipulating the atoms. Finally, frequencies above 10 GHz

can make superconductor losses significant [100], while even higher frequencies limit the

range of available superconducting materials. We note that more recent proposals have

also considered quantum optics and quantum information applications which use the basic

platform of Rydberg atoms in superconducting cQED architectures [101, 102]
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FIG. 6. Elementary geometry for coupling different Rydberg atoms, reproduced from [39]. Two

cilyndrical electrodes of radius R are used to couple to Rydberg atoms, trapped at a height h above

the electrode surface. The bus connecting the two electrodes can be superconducting, and can be

covered underneath.

FIG. 7. (a) Absorption images of 87Rb clouds trapped in a superconducting magnetic trap. The

dashed lines outline the shape of the trap electrodes, the view is vertically from above the chip [98].

Atoms were trapped as close as 50µm from the chip surface (b) Excitation of helium Rydberg atoms

while in transit at a mean distance of 1 mm from a coplanar waveguide resonator. Oscillations of

the population in the |33, s〉 state are visible. The coherence is limited by inhomogeneity in the

electric fields arising from the resonator. Reproduced from [99].

D. Polar Atoms and Superconducting cQED

. Another possibility is to use cold polar molacules, coupled to electrical resonators

[42, 43]. The resonators can be used as a quantum bus between polar molecules, or to

couple molecules to superconducting charge qubits. Due to the lower dipole moment of

polar molecules compared to Rydberg atoms, cf. Table I, the coupling to a resonator will

be weaker. One way to increse the coupling is to use large ensembles of molecules [43]. For

a cloud of 106 molecules, with dipole moment µ = 5 D, trapped at an effective distance

Deff = 10µm from a typical resonator, the coupling strength will be g ≈ 2 π× 10 MHz. The
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coherence of the Dicke states in which quantum information is encoded in the molecular

cloud, can be limited by intermolecular collisions, and estimates on the strength of this

effect put the decoherence rate at γ ≤ 4400 s−1 [43]. If individual molecules are used,

significant coupling can only be achieved at submicron effective distance from the resonator.

At an effective distance of 0.1µm, CaBr with dipole moment of 4.36 D will couple to a 50 Ω

transmission line with g ≈ 2π × 400 kHz [42].

For both Rydberg atoms and polar molecules trapped close to solid-state device surfaces,

electric field noise arising from the surfaces will contribute to decoherence. Electric field

noise at the atom (or molecule) transition frequency can drive transitions causing energy

relaxation. White noise (e.g. Johnson) noise can be limited with appropriate setup design,

but the anomalously large electric field noise encountered in ion trapping experiments was

not included in previous estimates [42], and we evaluate its importance here. To estimate

the strength of this effect, we take the typical measured electric field noise power spectral

density, SE(ω), near surfaces at cryogenic temperatures, which we mentioned in Sec II.

This noise has been measured in the MHz range, and the extrapolation to the GHz regime

introduces large uncertainty. For a Rydberg atom with µ ∼ 5 × 104 D and transition

frequency 5 GHz,at a distance of 10 µm from a solid surface, the damping rate will be

γ1 ∼ 5− 25000 s−1, depending on whether the frequency scaling of the noise is 1/f or 1/f 2.

For a polar molecule with µ ∼ 5 D and transition frequency 5 GHz,at a distance of 0.1 µm

from a solid surface, the damping rate will be in the same range, γ1 ∼ 10 − 50000 s−1.

Clearly the exponent of frequency scaling will be very important to the outcome of these

experiments, and not much can be said before the actual measurements are performed.

Electric field noise will also contribute to dephasing of Rydberg atoms and polar

molecules, due to static Stark shifts. In this case, the low frequency part of the electric

field noise spectrum, over a bandwidth given by the coupling rate is relevant to dephasing.

For Rydberg atoms, operation near a ‘sweet-spot’ where only quadratic Stark shifts occur,

can be impractical [38]. In the absence of a sweet spot, the dephasing rate will be, up to

a logarithmic factor, given by γϕ ∼ ∂ω
∂E
E0, where E0 describes the strength of electric field

noise SE = E2
0/(f)α, and ∂ω

∂E
is the sensitivity of the transition frequency to static fields.

For Rydberg atoms trapped 10µm from a solid surface the ‘anomalous’ noise seen in ion

traps implies γϕ ∼ 106 s−1. For polar molecules at a distance of 0.1 µm from a solid surface,

operating near a ‘sweet spot’ the dephasing rate is γϕ ∼ 600 s−1, using the parameters of
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CaBr from [42]. Far from the sweet spot, the dephasing rate will also be γϕ > 106 s−1. It

is clear that operation near a sweet spot is preferable for both Rydberg atoms and polar

molecules. If this is not feasible, the dephasing problem can potentially be mitigated using

dynamical decoupling schemes, but the details and compexity of such schemes remain to be

evaluated.

E. Trapped Ion and Superconducting Charge Qubit

The electrostatic interaction of a trapped ion with a superconducting charge qubit can

be used to implement a controlled phase gate between them, as proposed in [72, 103]. In

this case, contrary to the above, no energy is exchanged between the two systems during

the interaction. Rather, a σz σz type interaction is used to imprint a state-dependent phase

on the ion and the charge qubit. In specific, the ion is trapped near an electrically floated

electrode, which is also capacitively coupled to the superconducting island of a charge qubit,

as shown in Fig. 8. The electrode serves as a capacitive bus, shortening the effective distance

between the ion and the charge qubit. Now, if the ion is displaced from its equilibrium

position by x, or if the Cooper pair box contains one additional Cooper pair, described

by σz, the electrostatic energy is increased by e2

C
a x
Deff

σz. The capacitance C describes

the capacitance of the coupling electrode to ground, and the factor a describes the relative

voltage drop along a capacitive divider which supplies the ion signal to the superconducting

island. If C ≈ 3 fF, x ∼ 0.2µm, a ≈ 0.5, this interaction energy is approximately ~ 2π ×

200 MHz. This interaction forms the basis of the phase gate, for example if a state-dependent

displacement is applied to the ion, then the system will acquire a state-dependent phase π

in τπ ≈2.5 ns. The phase is acquired only if both the ion is displaced, and the charge qubit

has one additional Cooper pair. Two successive state-dependent laser kicks on the ion,

in opposite directions and seperated by τπ, then complete the phase gate. One additional

feature is added to the scheme in order to increase the robustness of the charge qubit state to

spurious signals present on the coupling electrode: the charge qubit is capacitively coupled

to the wire via a switchable SQUID-based capacitive coupler [103].

The main advantage of this scheme is that it bypasses the frequency gap between a

trapped ion signal and typical superconducting electronics. The main unresolved issue is

that the fast phase gate operation relies on making the charge qubit very sensitive to the
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FIG. 8. An ion trapped next to a coupling electrode which is capacitively coupled to a supercon-

ducting charge qubit, as proposed in [72].

charge signal from the ion displacement, less than 10−2e even if an ion displacement by

0.2 µm and a Deff ≈ 20µm, are achieved. In practice this means, that one needs to keep the

capacitance of the superconducting island to ground below the 1 fF range. This optimization

is detrimental to the coherence of the charge qubit, as it becomes exceedingly sensitive to

charge fluctuations of the environment nearby. The vast increases in charge qubit coherence

times over the past decade, are to a large extent due to engineering the capacitance of the

island to ground to be large [20].

Finally, we mention here that there are currently efforts to couple distant electrons in

Penning traps [73] and distant ions [75] to each other via a capacitive bus. The coupling

rates in these experiments follow from the general treatment of Sec. IV, but will not be

derived here in detail. From the perspective of hybrid quantum devices, these experiments

are important because they can provide insight into the decoherence mechanisms which are

relevant to surface plasmon modes in metals, in the MHz frequency regime, and at the single

quantum level.

F. Trapped Ion Coupled to Nanobeams

Tian et al. [91] discuss a single ion trapped in a Paul trap formed by two nanowires acting

at the same time as nanomechanical oscillators. Radio frequency applied to these wires is

supposed to confine the ions strongly such that they are resonant with the fundamental

mechanical mode of the nanowries. As wires the authors propose carbon nanotubes with

length of a few µm. The nanotubes are assumed to be spaced by 200 nm with an ion-tube

distance of d0 = 100 nm. The ion oscillates here at typical frequencies of ω = 2π × 1 GHz.
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This results in a significant increase in the coupling strength, which turns out to be g =

~ω
√
mi/mb = 2π × 10 MHz.

The authors propose two experiments. In the first, quantum state engineering of entan-

gled states of the form |Ψ1〉|χ2〉 ± |χ1〉|Ψ2〉 is considered, where the indices label two modes

of the nanobeams with resonance frequencies differing by much more than the respective

ion-beam couplings gi. Secondly, the authors discuss also cooling a mode of the beams close

to ground state by permantenly coupling the ion and beam while laser cooling the ion.

Despite the promising numbers, this type of experiment remains far from current capa-

bilities of ion trap groups, as scaling ion trap fabrication technology to the nanoscale is a

highly ambitious goal. Other difficulties may arise from the influence of the cooling lasers

on the nanotube structure, the possibility of field ionization from the nanotubes, as well as

electronic noise considerations are not estimated, and to a large extent cannot be estimated.

We finally turn our discussion to a similar system [92]. Here, the ion is assumed to be

trapped by an electrode structure independent of the nanobeam. The nanobeam is charged

to Q = V C, where V ∼ 10 V is the voltage applied to the nanobeam and C is its capacitance.

Neglecting image charges as well as the renormalization of the trap frequency (see Sec. IV),

and using parameters for the nanobeam given in [104], the authors derive a coupling rate

of 2π×50 kHz for coupling to a cadmium ion trapped at a distance of 50 µm from the

nanobeam while estimating .

VII. SUMMARY

Quantum hybrid devices promise exciting opportunities both for fundamental physics

and technology development. In particular, the quantum information and quantum sensing

fields could benefit greatly from such a technology. We saw that various atomic systems and

solid-state devices can provide platforms for hybrid systems, and summarized some common

ways to interconnect them. The physical property considerations that go into the design of

a hybrid device, can be summarized as follows:
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A. Coupling Rate

For the qubits, a high dipole moment can be beneficial because it leads to increased

coupling strength. For a harmonic oscillator, large (small) characteristic impedance im-

plies strong coupling to electric (magnetic) dipoles. Intermediate values of characteristic

impedance can be optimal for a harmonic oscillator bus used to couple an electric dipole

to a magnetic dipole. For a capacitive bus, small capacitance to ground and large coupling

to the electric dipoles (i.e. large electric fields at the dipoles) are required. The different

scales and technological operation requirements of atoms and solid state systems can be seen

as a vast impedance mismatch, on the order of ten orders of magnitude. This gap can be

partially bridged by a well engineered quantum bus or simply by increasing the number of

atoms to couple to.

B. Coherence Time

Long coherence times are required for both of the qubits and the bus in a hybrid. As

a rule of thumb, the sum of all decoherence rates in the hybrid should be much smaller

than the lowest coupling rate between different components. Minimizing thermal noise can

usually be achieved by minimizing blackbody radiation at the bandwidth of interest, for

example ∼ 5 GHz signals at ∼ 50 mK temperatures. To minimize non-thermal sources of

decoherence, we are required to understand the physical environment of all the components

of our device, i.e. identify what environmental degrees of freedom are relevant, and how

strongly they couple to the dipoles or the electromagnetic field of a resonator. Both the

solid state qubit, the atomic qubit, and the electromagnetic field of the bus must couple to

each other more strongly than to all other degrees of freedom in the environment. A perhaps

physically more transparent way to say this, is that the quantum signals transmitted by the

bus have to be much stronger than the environmental noise injected to the qubits over the

the bandwidth of the bus. Therefore it is useful to limit the bandwidth of the bus to the

coupling rate in order to filter unwanted sources of decoherence.
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C. System Compatibility

The operation of each component of a hybrid should interfere as little as possible with

the rest. The atoms should be reliably trapable, preferably with long storage times, in

the presence of the solid state environment, with minimal interference. This is a two-fold

requirement. On one side, optical, radio-frequency, and static electromagnetic fields used

for trapping and manipulating the atoms should interfere minimally with the solid-state

devices. The possible effects range from thermal load management, to decoherence induced

by the strong fields required for the atomic system. On the other side, the presence of the

solid state environment and the control fields used for the solid-state qubit operation, should

cause minimal decoherence to the atoms. Additional compatibility requirements arise if the

atomic system and the solid-state system cannot be made resonant with each other. In these

cases, a non-linear coupling mechanism can be used to implement a parametric frequency

conversion scheme between the two sides. Alternatively, a dispersive coupling scheme can

provide phase-gate (i.e. σz⊗σz) type coupling. In both cases, increased sensitivity to noise,

as well as noise added because of the interface have to be carefully evaluated.

VIII. CONCLUSIONS

We identify the large intrinsic decoherence of solid-state systems in combination with the

small dipole moments of atomic systems (with the exception of Rydberg atoms) as the main

challenge toward interfacing atomic with solid-state systems. We envision devices in which

quantum in- formation flows from one side to the other. At the end of this endeavor could be

quantum in- formation–processing devices with an atomic memory and a solid state–based

processing unit. Mastering the technological challenges will provide us also with unique

means to probe quantum effects in the solid state. Thus, we can hope to take advantage

of the quantum control and long coherence times of trapped atomic systems to probe the

complex and strongly correlated quantum–many body states in the solid state.
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[46] Ch. Roos, Th. Zeiger, H Rohde, H C Nägerl, J Eschner, D Leibfried, F Schmidt-Kaler, and

R Blatt. Quantum state engineering on an optical transition and decoherence in a Paul trap.

Physical Review Letters, 83:4713, 1999.

[47] D J Wineland, C Monroe, W M Itano, D Leibfried, B E King, and D M Meekhof. Exper-

imental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions. Journal

of Research of the National Institute for Standards and Technology, 103:259–328, 1998.
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