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Abstract

Quantum Correlations and Energy Transport in Trapped Ions

by

Michael Ramm

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Hartmut Häffner, Chair

We present experimental results of using trapped ions for the study of energy transport
and quantum correlations in many-body systems. We investigate energy propagation by
locally exciting one end of an ion chain and then observing the subsequent dynamics. The
experimental results agree with the presented normal mode model of ion motion, and signify
the first steps towards realizing theoretical proposals of studying many-body physics with the
motional degree of freedom of trapped ions. Additionally, we present a method for detecting
correlations between an open quantum system and its environment by acting only locally
on the open system. We implement this method using a single trapped ion and discuss our
current work towards extending the results to larger systems. Lastly, we demonstrate how
the presented method for local detection of quantum correlations can be used for detection
of quantum phase transitions.
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Chapter 1

Introduction

Chains of trapped ions are among rare physical systems that allow for control of many
interacting particles at a single quantum level. The original experiments demonstrating
confinement of charged particles by Wolfgang Paul in 1950s using oscillating electric fields
and trapping of a single electron by Hans Dehmelt in 1973 using a combination of static
magnetic and electric fields have led to inestimable progress in the field of atomic physics.
The invention of laser cooling by the groups of Dave Wineland and Werner Neuhauser in 1978
allowed to dramatically reduce the kinetic energies of the trapped particles. The development
of sideband cooling allowed to further reduce the motional energy, reaching the ground state
of motion, improving the ability to manipulate the internal state of the atom with laser fields.
These advancements led to remarkable refinement of precision measurements of fundamental
constants, spurred laser cooling experiments with neutral atoms, and laid the groundwork
for emerging fields such as quantum information processing and quantum simulation.

In particular, technological advancements in the field of atomic physics have made it
possible to experimentally study the role of quantum effects in the dynamics of many-body
systems. This topic has been the subject of a multitude of theoretical pursuits covering far-
ranging topics from the connection of quantum correlations and quantum phase transitions to
consequences of quantum effects for the efficiency of energy propagation in photosynthetic
complexes. There have been several experiments successfully realizing a quantum phase
transition with trapped ions. However, many theoretical ideas concerning the presence of
quantum correlations during these transitions and, more generally, the effect of the quantum
correlations on the system dynamics remain unexplored.

Even in the classical regime where quantum correlations do not play a role, the motional
dynamics of long ion chains presents a compelling subject of study. By increasing the number
of particles from tens to hundreds, one may begin to observe the emergence or deviations
from expected thermodynamic quantities, thus, experimentally validating the fundamental
origins of statistical mechanics. There have been no experimental measurements of the
thermodynamic quantities due to the difficulties of controlling long ion chains.

The next five chapters of this dissertation provide a detailed description of several ex-
periments performed in pursuit of these goals. Chapter 2 reviews the theory of ion trapping
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and laser-ion interaction. Then Chapter 3 describes the experimental setup for trapping
and controlling long chains of ions. Chapter 4 focuses on classical measurements of energy
transport across the chain. Chapter 5 then demonstrates a technique for detecting quan-
tum correlations between two quantum systems with only access to one of the two systems.
Finally the ideas of the previous chapters are combined in Chapter 6, where we make a
connection between dynamics of the chain motion and the detected quantum correlations
over the course of the evolution. The appendix covers numerous technical details.



3

Chapter 2

Ion Trapping and Laser Interaction

In this Chapter we review the principles of ion trapping and the interaction of the confined
ions with laser light. In the first section, we describe the use of oscillating electric fields to
confine charged particles in a three-dimensional harmonic potential. In the second section,
we describe the interaction between the confined ions and laser light, covering the processes
of Doppler cooling using a dipole transition and the coherent manipulation of energy levels
of a quadrupole transition. These topics have been extensively described in many textbooks,
so we focus on the main results that will be needed for the experiment described in the
thesis.

2.1 Ion Trapping

According to Earnshaw’s theorem, point charges can not be confined in a stable equilibrium
using static electric fields. To trap ions we, therefore, require dynamic or time-varying elec-
tromagnetic fields. Following the treatment of Leibfried et al. [2], we consider a quadrupole
potential φ that is composed of static and time-varying components:

φ(x, y, z, t) =
U

2

(
αx2 + βy2 + γz2

)
+
Ũ

2
cos (ωrft)

(
α′x2 + β′y2 + γ′z2

)
, (2.1)

where U and Ũ are the amplitudes of the static and dynamic components, and ωrf is the
angular frequency of the oscillating electric field. The typical configuration of Paul trap
electrodes and the generated time-varying potential are depicted in Figure 2.1. We analyze
the motion of the ion in the trap by considering the classical equations of motions along the
x axis for a particle of mass m and charge Z|e|:

mẍ = −Z|e|∂φ
∂x

= −Z|e|
(
Uα + Ũα′ cos (ωrft)

)
x . (2.2)

This differential equation is equivalent to the Mathieu equation:

d2x

dξ2
+ (ax − 2qx cos (2ξ))x = 0 , (2.3)
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Dynamical trapping at saddle point (a) (b)Paul trap electrodes

V sin!rft

V sin!rft GND

GND
!rf

Figure 2.1: On the left is the standard Paul trap electrode configuration. An oscillating
voltage with frequency ωrf is applied to one pair of electrodes while the other pair is held
at ground. Dashed lines indicate the resultant electric field of the generated quadrupole
potential. The oscillating quadrupole potential is depicted on the right. The ion is trapped
at the saddle point of the potential where the electric field strength is zero. The diagram is
adapted from [1].

where ξ , ax and qx are dimensionless variables representing time, strength of static and
oscillating fields, respectively:

ξ =
ωrft

2
, (2.4)

ax =
4Z|e|Uα
mω2

rf

, (2.5)

qx =
2Z|e|Ũα′
mω2

rf

. (2.6)

The solution to the Mathieu equation is studied by Floquet theory. While the most general
solution has no closed form,

x(ξ) = Aeiβξ
∞∑

n=−∞

C2ne
i2nξ +Be−iβξ

∞∑
n=−∞

C2ne
−i2nξ , (2.7)

the lowest-order approximation to the ion motion in the stability region is given by [2]:

x(t) = 2AC0 cos(βx
ωrf

2
t)(1− qx

2
cos(ωrft)) , (2.8)

where βx is defined as:

βx =

√
ax +

q2
x

2
. (2.9)
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We observe that the ion exhibits oscillatory motion at the secular angular frequency ω =
βxωrf/2 superimposed with oscillation at the driving frequency ωrf. The latter is called micro-
motion because its amplitude is reduced by the factor qx/2. Disregarding the driven motion
at the frequency ωrf, the ion’s secular motion corresponds to confinement in a harmonic po-
tential with the natural frequency ω. This result may also be derived by making the pseudo
potential approximation [3]. The effective potential is given by

U =
Q2

2mω2
rf

〈E2
x〉 , (2.10)

where Q is the total charge Q = Z|e|, and 〈E2
x〉 is the time-averaged square of the electric

field.

2.2 Ion-Laser Interactions

2.2.1 Coherent operations

In this section, we consider the interaction of a two-level confined ion with a traveling light
wave. This analysis applies to the laser at 729 nm interacting with the narrow S1/2 – D5/2

transition of Ca+. The transition will be employed in the experiments for determining the
state of the ion motion and preparing quantum correlations between the ion’s electronic state
and its motion.

As shown in section 2.1, the ion is effectively confined in a harmonic potential with the
oscillation frequency ω. Additionally, we assume that the ion has two electronic energy levels
with the atomic transition frequency ωa. The bare Hamiltonian H0 is then given by

H0 =
p2

2m
+

1

2
mω2x2 +

1

2
h̄ωaσz , (2.11)

where p is the ion momentum and σz is the third Pauli spin matrix. When the ion is
interacting with the traveling light wave, the total Hamiltonian is the sum of the bare
Hamiltonian H0 and the coupling Hamiltonian Hc [4, 5, 2]:

Hc =
1

2
h̄Ω0 (σ+ + σ−)

(
ei(kx−ωLt+φ) + e−i(kx−ωLt+φ)

)
, (2.12)

where ωL, k, and φ are the frequency, wave vector, and phase of the traveling wave, and
σ+ and σ− are the raising and lowering operators. The Rabi frequency Ω0 describes the
interaction strength in the presence of micromotion. The ion motion in the trap is quantized
in the standard way:

x =

√
h̄

2ωm
(a† + a) , (2.13)

p = i

√
h̄

2ωm
(a† − a) , (2.14)
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using the raising and lowering harmonic oscillator operators a† and a. The total number of
vibrational quanta, or phonons, is defined as the expectation value of the number operator
N = a†a. Additionally, we define the Lamb-Dicke η parameter as the ratio of the traveling
wave wavelength and the extent of the ion’s ground state wave function:

η = k

√
h̄

2mω
. (2.15)

We calculate the interaction Hamiltonian by performing the transformation Hint = U †HcU
with U = exp[−iH0t/h̄]. Performing the rotating-wave approximation yields [2]

Hint =
1

2
h̄Ω0

(
σ+e

iη(ae−iωt+a†eiωt)ei(φ−δt) + σ−e
−iη(ae−iωt+a†eiωt)e−i(φ−δt)

)
, (2.16)

where δ = ωL − ωa is the detuning between the laser and the atomic transition. Controlling
the laser detuning allows to resonantly couple the ion’s electronic and motional states. Set-
ting the detuning δ ≈ lω for some integer l couples the states in the form |g〉|n〉 and |e〉|n+ l〉
with the Rabi frequency Ωn,n+l, where |g〉 and |e〉 are the electronic states of the atom and
|n〉 is the number state with n phonons in the trap. The coupling strength Ωn,n+l is given
by

Ωn,n+l = Ω0|〈n+ l|eiη(a+a†)|n〉| , (2.17)

where the matrix element may be expressed in terms of a Laguerre polynomial [2]. The transi-
tions can be driven individually in the resolved sideband regime: small detuning δ− lω � ω,
sufficiently weak coupling Ωn,m � ω for all possible n and m, and narrow excited state
linewidth Γ� ω. The integer l is called the order of the sideband. The first blue sideband
corresponds to l = +1 and the first red sideband is l = −1 while l = 0 is known as the
carrier excitation. The ion trapping experiments are typically conducted in the Lamb-Dicke
regime where the spatial extent of the ion’s wavepacket is much less than the wavelength of
the atomic transition, η � 1. In this regime, the interaction Hamiltonian may simplified by
expanding for small η. Particularly for the first red sideband l = −1, Hint ≡ Hrsb reproduces
the Jaynes-Cummings Hamiltonian:

Hrsb =
1

2
h̄Ω0η

(
aσ+e

iφ + a†σ−e
−iφ) . (2.18)

This interaction is used to perform sideband cooling, as described in Figure 2.2. The first
blue sideband l = 1 gives rise to the anti-Jaynes-Cummings interaction:

Hbsb =
1

2
h̄Ω0η

(
a†σ+e

iφ + aσ−e
−iφ) . (2.19)

The red and blue sideband interactions are depicted in Figure 2.3.
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Frequency

Laser+

+

Laser

Carrier

Red motional 
sideband

Blue motional 
sideband

Figure 2.2: Sideband cooling is performed in the regime of resolved motional sidebands.
The laser frequency is tuned to resonance with the first red motional sideband: the laser
frequency is equal to the frequency of the carrier transition minus the trap frequency. When
the laser promotes the ion from the ground state to the excited electronic state, the number
of phonons decreases by 1. The ion then spontaneously decays back to the electronic ground
state, or is repumped back to the ground state with an additional laser.

2.2.2 Doppler cooling

We perform Doppler cooling to reduce the kinetic energy of the trapped ions and conduct
experiments in the Lamb-Dicke regime. We use the S1/2–P1/2 transition with a short lifetime
where the resolved-sideband condition does not hold due to the large transition linewidth
Γ� ω. The intuitive scheme of Doppler cooling is presented in Figure 2.4. Mathematically,
the process is treated semi-classically. We assume that the two-level atom is interacting with
a laser detuned by ∆ from the atomic transition. Each scattered photon transfers momentum
onto the atom, resulting in the radiation pressure force F ,

F = h̄kΓρee , (2.20)

where ρee is the excited state probability,

ρee =
s/2

1 + s+ (2δeff/Γ)2
, (2.21)

with the saturation parameter s = 2Ω2/Γ and the effective detuning δeff = ∆ − kv. The
excited state probability is greatest when the laser is on resonance δeff = 0. For a red
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⌦
|g�

|e�

Electronic State Motion

|g, ni

|e, ni

|g, n � 1i

|e, n � 1i

|g, n + 1i

|e, n + 1i
Joint Energy Levels

729 nm

Figure 2.3: The laser at 729 nm couples the electronic and the motional states of the ion.
When the laser is tuned to the frequency of the carrier transition (black), the motion is not
affected. Tuning the laser to the red motional sideband (red) couples the states in the form
|g, n〉 and |e, n − 1〉. This process is used to perform sideband cooling. Tuning the laser to
the blue sideband (blue) couples the states in the form |g, n〉 and |e, n+ 1〉. This interaction
will be used to create quantum correlations between the electronic state and the motional
degree of freedom.

detuning ∆, the atom is more likely to absorb a photon when it’s moving towards laser
than away from it, resulting in a net cooling effect. For small velocities, the force may be
linearized F = F0(1 + κv) where the prefactor F0 = F (v = 0) and the viscosity coefficient
κ = ∂F

∂v
(v = 0). The viscous force reduces the atom’s kinetic energy, but the random nature

of the scattering events provides a heating mechanism. The heating and the cooling are
balanced at the equilibrium temperature known as the Doppler limit,

Tmin =
h̄Γ
√

1 + s

4kB

(1 + ξ) , (2.22)

where kB is the Boltzmann’s constant and ξ is the geometric projection of an emission recoil
kick onto the considered axis, ξ = 2/5 for dipole emission.
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Figure 2.4: The schematic of the Doppler cooling process. The laser frequency is set to be
below the atomic transition. Due to the Doppler effect, the ion is more likely to absorb a
photon when it is moving in the direction opposite to the laser wave vector. The absorbed
photon is reemitted in a random direction. The net effect leads to a decrease in the ion’s
kinetic energy.
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Chapter 3

Experimental Setup

In this section we describe the ion trapping apparatus used for the presented experiments.
The design goals for the setup include construction of a general-purpose ion trap to study
energy transport in ion chains, and an in-vacuum optical cavity with the purpose of local-
izing the ions in the standing wave and performing quantum simulations of oscillator chain
models. We, first, describe design and operation of the ion trap constructed to accommodate
these goals. We also present the ultra-high-vacuum (UHV) chamber that houses the trap and
provides optical access for ion-laser interactions. The next section focuses on the improved
design for the next generation of the trap and the chamber, both currently under construc-
tion. The last sections describe imaging the ions, the electronics used in the experiment,
and gives an overview of experimental control software.

3.1 Trap Design

Selecting a suitable ion trap design was a crucial consideration in planning the entire ex-
periment. To perform experiments with ion chains, it was clear that we had to use a linear
ion trap to generate the suitable confining potential. Additionally, our goal was to overlap
the chain of confined ions with a standing light wave. To achieve the best stability of the
standing wave with respect to the ions, we wanted to generate the standing wave with an
optical cavity placed inside the vacuum chamber. Both the trap and the cavity mirrors
would be subject to the same vibrations, minimizing their relative movement. The selected
ion trap, therefore, had to fulfill additional requirements: it had allow for optical access in
the direction along the ion chain, and had to provide the means of precisely positioning the
standing wave with respect to the ions.

The main choice for the trap geometry consisted of either using three-dimensional trap
geometry similar to Paul’s original design or using a surface ion trap, which were a relatively
new technology at the time of experiment planning. The main advantage of the surface design
is that the electrodes are precisely patterned using standard lithography techniques. The
exact positions of the ions is known ahead of time, making it easier to overlap the standing
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RF DCDC

PEEK frameHole for optical access

Compensation electrodes

Kapton wire

Figure 3.1: On the left is the schematic for the linear ion trap showing the DC and RF
stainless steel electrodes supported by a PEEK frame. An additional hole in the frame
provides axial optical access. The gap between the electrodes is 1 mm and the width of
the RF electrode is 3 mm. On the right is the assembled and wired trap as installed in the
experiment.

light wave. The ion is trapped hundreds of microns above the surface, providing optical
access from all directions. However, due to the short distance between the ions and the
electrodes, the surface traps were known to exhibit surface charging effects and anomalously
high heating rates.

In contrast to surface traps, the technology of three-dimensional traps was well estab-
lished. They had been used for decades in a number of laboratories around the world,
and were known to be reliable in operation. In the three-dimensional designs, the ions are
trapped farther from the nearest electrodes (typically on the order of 500 µm), avoiding the
undesired surface effects. The main disadvantage is that these traps consist of many deli-
cate parts that require precise machining. This makes it challenging to prealign the optical
cavity to the eventual ion position. Typically the axial confinement is provided by endcap
electrodes which block optical access along the chain of trapped ions.

Above all, we wanted the experiment to operate reliably, and so after taking all of the
presented considerations into account, we chose to use a three-dimensional trap. We based
the design on the trap used at the University of Innsbruck [6], altering the model to make it
compatible with our requirements.

The technical drawing and the constructed trap are shown on Figure 3.1. The electrodes
are made of 316L stainless steel, while the supporting frame is constructed from PEEK,
an UHV-compatible plastic material. After machining, the stainless steel electrodes were
electropolished in sulfuric acid using recipe SS-4 in [7]. The gap between the electrodes is
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1 mm and the center blades are 3 mm in length. The end pieces have a central hole for
optical access along the ion chain. The shape of the endcap electrodes of the Innsbruck
design was modified to match the blade geometry of the RF electrodes. The electrodes
are squeezed together and we use Kapton tape to insulate them electrically. The voltage
breakdown between adjacent electrodes was tested under vacuum for DC voltages up to
4 kV. The voltage values for trap operation are stated in section 3.6. We typically operate
the trap with the radial confinement frequency of 3 MHz and much lower axial confinement
of 200 kHz.

The standard linear ion trap is operated with a pair of radio frequency (RF) electrodes
and a pair of electrodes held at ground. Due to the finite length of the electrodes, this
configuration results an oscillating potential along the length of the trapping axis. This
oscillating potential results in a driven axial motion of the ions called micromotion. In order
to avoid this effect, we supply the voltage in an out-of-phase configuration. One pair of
electrodes is still supplied with RF while the other pair is supplied with the same RF 180
degrees out of phase. The produced potentials cancel along the trap axis, avoiding the axial
micromotion.

3.2 Vacuum Chamber

The optical cavity is designed for the wavelength of 405 nm, far detuned form the S1/2−P1/2

transition. The mirrors have reflectivity of 99.5% and the radius of curvature of 38 mm.
The resultant cavity was set up in a near-concentric configuration with the waist of 25 µm,
and finesse of 600. Both the ion trap and the optical cavity were mounted inside a spherical
octagon1 vacuum chamber, as shown on Figure 3.2. The cavity mirrors were glued to a
U-shaped stainless steel piece, which was attached to an XYZ manipulator2 and free to
move relative to the trap. For attaching the cavity mirrors, we used ultra-violet curable,
low outgassing epoxy3. The plan was to first trap the ions and then position the cavity to
overlap the waist of the cavity with the ion position. Once overlapped, the cavity could be
secured in place with a screwdriver inside the vacuum chamber attached to a wobble stick4.

We conducted several preparatory bakes to clean the parts and the chamber as much
as possible before the final pumpdown. All of the stainless steel parts that were machined
in a machine shop were cleaned in acetone and isopropanol and baked under vacuum at
300◦C for one week to remove all the oil residue and other contaminants. We conducted
the same bakeout procedure for all of the vacuum chamber parts that could withstand the
high temperature, using blank flanges instead of viewports. The glued cavity was baked to
confirm the UHV properties of employed epoxy and make sure that it stays aligned despite
the temperature ramps.

1Kimball Physics MCF600-SO200800
2Thermionics EC-1.39-2-B600
3Dymax OP-67-LS
4Thermionics FWS-44R-275-2
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Cavity U-bench

Cavity mirrors

Cavity mirrors

Figure 3.2: On the left is the schematic of the ion trap together with the optical cavity at
405 nm. The cavity mirrors are attached to the U-shaped stainless steel piece that is free to
move independently from the ion trap. On the right are the ion trap and the cavity placed
inside the UHV chamber. The distance between the mirrors is close to 76 mm.

The final assembly was baked for three weeks at a moderate temperature of 200◦C com-
patible with the XYZ manipulator and the wobble stick. After the final bake, the pressure
inside the chamber reached ∼ 2 × 10−9 torr. At this point we also activated the Titanium
sublimation pump to pump out the present hydrogen. We discovered that the pressure was
limited by a small leak in the angle valve. In the process of leak testing we sprayed the
problematic flange with water, managing to seal the leak and reducing the pressure by one
order of magnitude to ∼ 2× 10−10. Since then, the experiment has been under vacuum for
four years with the pressure improving beyond the measurement limit of the ion gauge. The
current pressure inside is less than ∼ 5×10−11 torr, leading to very few observed collisions of
trapped ions with the background gas even while working with long ion chains. We typically
observe a single collision-induced excitation to a dark state per hour in a chain of 10 ions.

3.3 Design Improvements

The presented chamber was our first assembled in Berkeley and we have been fortunate to
have conducted the first generation of experiments without ever breaking vacuum. In this
section, we describe the shortcomings of the current design and our plans for the second
generation trap and chamber, currently under construction.
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Figure 3.3: On the left is the schematic for the improved linear ion trap. All of the electrodes
are supported by a Macor frame. The DC electrodes have holes for optical access. The design
includes four compensation electrodes to circumvent shielding effects. On the right is the
assembled trap with the attached filter boards. The width of the RF blade is 4 mm.

3.3.1 Trap

The PEEK material used for the insulating parts of the chamber was found to be too soft
to allow precise positioning of the trap electrodes. In the new design of the trap, it has
been replaced with Macor. Ensuring relative alignment between the DC and RF blades was
particularly problematic so in the new design we modified the endcap electrodes. They are
nearly cylindrically-symmetric and have a hole in the center to allow for axial optical access.
While all of the stainless steel electrodes in the new design are secured with screws to the
Macor support pieces, their placement is controlled with tightly fitting dowel pins.

The current trap design included only two compensation electrodes, as shown on Fig-
ure 3.1. We assumed that the common voltage on the two electrodes would produce a vertical
electric field at the ion position, while the differential voltage would produce a horizontal
electric field, thus allowing to compensate micromotion in both of the directions. In practice
we found that even for common voltages up to 2 kV on the compensation electrodes, the ion
displacement in the vertical direction was minimal. We attribute this to the shielding effect
of the stainless steel blades. The new design will have two compensation electrodes on the
bottom and two on the side, allowing to compensate micromotion in both directions even if
the produced electric fields are shielded. The design also includes a mounted filter-board to
filter out electrical noise as close as possible to the electrodes.

3.3.2 Chamber

In the current setup, we have not been able to in couple laser light into the assembled cavity.
This prevented us from conducting experiments realizing the Frenkel-Kontorova model in
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Cavity mirrros

Figure 3.4: The new trap assembly shows two cavity mirrors attached to the same support
piece as the ion trap. The distance between the mirrors is 10 cm.

the current apparatus5. There are several possible explanations for the cavity misalignment.
Even though the optical cavity was tested to withstand the bakeout temperatures, it could
still have misaligned during the final pumpdown. After the bake, the XYZ translation stage
holding the cavity became coarser and more difficult to maneuver. It’s also possible that
the beam of neutral calcium from the oven was not sufficiently well collimated and covered
the cavity mirrors. The actual cause of the problem will only become known when the
current setup is opened, but the new design of the chamber already addresses the most
likely explanations.

In order to make cavity less prone to misalignment during temperature ramps, the new
design calls for a near confocal instead of a near concentric configuration. The larger resul-
tant waist and the corresponding decrease of the light intensity at the ion position will be
compensated by higher cavity finesse resultant from higher reflectivity of the cavity mirrors.
The new design also involves a simpler construction: the cavity will have a larger waist,
making it easier to prealign it to the trap. The cavity will be glued directly on the same
mount as the trap. There is no longer a need for the added complexity of the in-vacuum
XYZ translation stage and the wobble stick.

The new design of the chamber introduces several improvements. With the removal of the
wobble stick and component rearrangements, there will be better optical access with seven
available viewports. The chamber is electrically insulated from the optical table, reducing
the noise pickup. The octagon is electrically insulated from the grounded ion pump via an

5For more on the proposed experiments to detect the sliding to pinned phase transition in the Frenkel-
Kontorova model see Refs. [8, 9].
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Figure 3.5: The new UHV Chamber improves on the design of the current setup. The
feedthroughs for the RF and DC electrodes are separated. The trap assembly is placed
inside the octagon, providing seven viewports for optical access.

insulating nipple. The DC and RF feedthroughs are moved to separate flanges, allowing to
filter the DC wires as close as possible to the chamber. Finally a new oven construction with
an additional pinhole improves collimation of the neutral calcium beam.

3.4 Level Structure and Lasers

For the experiments we use a number of different laser sources. They, along with the con-
figuration of the double passes, are described in detail in Thaned Pruttivarasin’s thesis [9]
so here we provide a general summary. For calcium photoionization we use laser light at
422 nm, generated by frequency doubling a diode laser at 844 nm, and a 375 nm laser. The
level scheme of ionized calcium is shown in Figure 3.6. We perform Doppler cooling with
the diode laser at 397 nm to address the S1/2 − P1/2 transition. The lasers at 866 nm and
854 nm repump the ion from D3/2 and D5/2 states, respectively. The 397 nm laser and both
repumping lasers are referenced to optical cavities in order to stabilize their frequencies. The
diode laser at 729 nm is locked to a high finesse cavity and addresses the narrow S1/2−D5/2

transition.
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Figure 3.6: Level scheme 40Ca+. We perform Doppler cooling on the S1/2–P1/2 transition.
The laser at 729 nm addresses the narrow S1/2–D5/2 transition. The electron shelving method
allows to detect with high fidelity whether the ion is in the ground state S1/2 or in the excited
state D5/2.

3.5 Imaging

The purpose of the imaging system is to collect as much fluorescence as possible from the
trapped ions, and in addition, to narrowly focus onto the ions the laser beams at 729 nm.
The fluorescence is collected through the top viewport of the chamber. The imaging diagram
is shown in Figure 3.7. The ion fluorescence is focused with a custom-made objective6

designed to correct for chromatic aberrations at 397 nm and 729 nm [10]. The objective
is approximately 70 mm away from the trapped ions. It can be precisely positioned with
a manual XYZ translation stage7. At the working distance of the objective, the image is
focused approximately 75 cm away. The collected light is reflected by a 2” silver mirror
chosen to be highly reflective at both 397 nm and 729 nm. After the mirror, the light is sent
into the imaging box. Inside, it is split with a 55% / 45% pellicle beamsplitter8 between a

6Silloptics
7Thorlabs PT3/M
8Thorlabs BP245B5
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Figure 3.7: The imaging diagram from Thaned Pruttivarasin’s thesis [9]. The fluorescence
from the ion is collected with an objective and then split among a CCD and a PMT. Two
laser beams at 729 nm are overlapped on a beam cube and are counter-propagated along the
imaging system.
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Figure 3.8: Photons collected by the PMT in 3ms. The two distinct distribution arise from
the cases when the ion is in the D5/2 state (left) and the S1/2 ground state (right).

photomultiplier tube (PMT)9 and an electron-multiplying (EM) CCD Camera10,11. Light
at other wavelengths than 397 nm is filtered out with two band-pass filters12. As much
of the optical path as possible is enclosed with plastic 2” tube to prevent stray light. We
typically collect a maximum of ∼ 30, 000 counts per ion per second with the PMT. The
overall detection efficiency for the setup was measured to be 1.2× 10−3 by using a series of
population transfers [11].

Two laser light beams at 729 nm are overlapped inside the imaging box. They are
counter-propagated along the imaging system using a dichroic mirror in order to produce a
tight focus at the ion position. The direction of both beams can be adjusted using electrically
actuated mirror mounts13.

Using the imaging system, it is possible to detect with high fidelity whether the ion is in
the ground state S1/2 or the excited states D5/2. If the ion is in the ground state when we
switch on Doppler cooling, it will continuously scatter photons at 397 nm. If the ion is in
the D state, it will remain dark with the Doppler cooling beams on. The two cases result
in the histogram of counts collected on the PMT as shown on Figure 3.8. By setting the
discrimination threshold in between the two distributions, we can determine the probability
of the ion being in the state D5/2.

9Sens Tech P25PC
10Andor Luca
11Depending on the experiment, the beamsplitter is removed and all of the light is directed to either of

the detectors
12Semrock FF01-377/50-25 and FF01-417/60-25
13Newport Picomotor 8821
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Figure 3.9: (a) The reference image of an 8-ion chain shown along with the chain rotation
angle θ. The black circle is the center of the chain with the coordinates (x0, y0). (b) The
sample image to test the state detection algorithm – the ion state is determined to be
~r = [1, 0, 0, 0, 0, 0, 0, 0]. Note that the images are stretched vertically in order to demonstrate
the rotation angle.

3.5.1 Ion State Detection CCD

In this section, we describe the procedure used to perform state detection with the CCD
camera. The CCD is advantageous for detecting the state of multiple ions in the trap. While
the PMT has a higher detection efficiency of ∼ 25% at 397 nm, it only collects the total
emitted photons and does not provide information about which particular ion is bright or
dark. The CCD allows to obtain this information at the expense of additional complications:
the CCD method requires a longer exposure time of 10 ms, a fitting procedure and a reference
image are needed to determine the ion state, and it is more difficult to establish the statistical
confidence of the result.

When using the CCD for state readout, we, first, specify the region of interest – the range
of camera pixels that fully contain the trapped ions. Reducing the region of interest improves
both the transfer rate of the image to the computer and the speed of the fitting algorithm.
These are important considerations because hundreds of images need to be taken to precisely
determine the expectation values of the ion state. We then specify the exposure parameters:
EM gain, pixel binning and the exposure time. By varying the readout parameters, we found
that the state detection worked best with 2 × 2 pixel binning and EM gain set to 200 out
of the maximum of 255. The former improves signal-to-noise while the latter avoids many
“hot” pixels appearing at the maximum gain setting. These optimized settings allowed us
to reduce the required exposure time to 10 ms. This is still much longer compared to 1.5 ms
required for the PMT, pointing to the large difference in detection efficiencies.
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With all of the settings optimized, we take a reference image as shown in Figure 3.9. This
is done with all of the ions bright at the same laser parameters and for the same exposure at
the eventual state readout. We usually average several hundred images, each exposed for the
state readout duration, to produce the reference image. The reference image is then fitted
with the model below to extract all of the relevant parameters about the ion positions and
intensity14:

I(x, y) = I0 + A

i<N∑
i=0

N (xi, yi, σ
2) , (3.1)

where I(x, y) is the pixel intensity of the reference image, I0 is the background level, A
is the ion intensity, N is the total ion number of ions, and N (xi, yi, σ

2) is the Gaussian
distribution centered at the position of ion i, (xi, yi), where every Gaussian has the same
standard deviation σ:

N (xi, yi, σ
2) = exp

[
−(x− xi)2 + (y − yi)2

2σ2

]
. (3.2)

We place additional constraints on the ion positions by assuming that the ions form a linear
chain. In this case, the relative ion positions are determined from the equilibrium between
the Coulomb potential and the trap confinement. The positions are given by:

xi = x0 + si,N l cos θ , (3.3)

yi = y0 + si,N l sin θ , (3.4)

where (x0, y0) are the center coordinates of the chain, θ is the rotation angle of the chain
axis relative to the coordinate system, si,N is the relative position of ion i, and l is the length
scale converting the relative position to distance in pixels. The relative positions si,N are
calculated numerically ahead of time for the chain of the given length N . For a listing of the
precalculated relative positions see Table 1 in Ref. [12].

The free parameters of the model are the background intensity I0, the ion intensity A,
the chain center (x0, y0), the chain rotation angle θ, and the length scale l. The number of
ions is held constant and is specified beforehand. The fitting procedure is fully automated:
all of the initial guesses for the parameters are extracted directly from the reference image,
requiring no user intervention.

We briefly describe the methods for automated parameter extraction that worked well in
practice. The guess background intensity I0 is found by taking the mean of the pixel values
along the edge of the image - where we assume no ions are located. We also calculate the
standard deviation of intensity of these background pixels. All of the pixels three standard
deviations above the background are assumed to belong to the ions. If no such pixels are
found, the threshold is progressively lowered. The mean of the positions of the ion pixels

14For consistency with the software implementation, we use the Python indexing convention, denoting
the left-most ion as ion 0.
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are used to guess the center of the ion chain (x0, y0) and the mean value to guess the ion
intensity A. The variance of the positions is also used to guess the length scale l15.

The width of the Gaussian, σ is assumed to be 1 since the intensity of each ion is typically
contained in an area of 2× 2 pixels. The rotation angle θ is guessed to be zero because it’s
known to be small, θ ∼ 3◦. In fact, to make the algorithm more robust, the fitting is first
done with the angle fixed at θ = 0 to optimize the other parameters, and only then θ is
varied.

Once the reference image is fitted, we are ready to perform state detection. For each
collected image, the goal is to determine which of the ions, if any, are dark. The ion state
is represented by an N-long vector ~r where each entry ri is either 0 (bright) or 1 (dark),
ri ε {0, 1}, see Fig. 3.9. The expected intensity for this combination of bright and dark ions
is:

I~r(x, y) = I0 + A
i<N∑
i=0

(1− ri)N (xi, yi, σ
2) . (3.8)

We determine the state vector by finding one that minimizes the mean-squared error to the
state readout image. In the current implementation, we do this by sampling over all of
the 2N possible state combinations16. Additionally, we extract the confidence of the fit by
comparing the errors from the best and the second best combinations. We found empirically
that state direction has a very high fidelity when the error of the second best combination
is at least 20% larger than the best combination. It is also useful to monitor the confidence
level: a drop in confidence indicates that the ions drifted away from the previous positions
and another reference needs to be taken.

15It is important to have an accurate initial guess for the spacing l to order to avoid local minima of
the minimization procedure. For example while fitting a five-ion chain, if the initial guess for spacing is too
long then the ions to the left and to the right of the center will get overlapped with the extreme ions of the
image. The spacing guess is also extracted from the image: consider the chain of N ions to lie along the
x axis, centered at x = 0 with the spacing length scale l. The position of the i-th ion xi = si,N l. Each
ion is assumed to be 1 pixel wide to make the analysis easier. Once the bright pixels are identified, we can
compute the variance of their positions:

Var = E(x2)− E(x)2 =
1

N

N∑
i=1

x2i −
(

1

N

N∑
i=1

xi

)2

(3.5)

=
l2

N

N∑
i=1

s2i,N , (3.6)

since E(x) = 0. Therefore the length scale is related to the variance through

l =

√
Var×N∑N

i=1 s
2
i,N

. (3.7)

16While the procedure of sampling over all the combinations is prohibitively long for longer chains of
N > 8 ions, it can easily modified to only make site-by-site state determination. The modified procedure
would not take into account the cross talk about the ion intensities due to imaging aberrations.
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3.6 Electronics

In this section, we provide a brief description of the electronics used in the experiment. The
trap is driven with an oscillating RF voltage of 30 MHz generated with a Rohde Schwarz
SMB100A synthesizer, amplified with a 20 W amplifier17. The amplified signal is stepped
up in a half-wave helical resonator described in [9] to produce two out-of-phase oscillating
voltages needed for the out-of-phase trap drive. The DC voltages for the endcaps in the
range between 0 V and 40 V are generated with a custom-built DAC controlled with an
Opal Kelly FPGA. One of the DAC channels applies a DC bias on the RF voltage using a
bias tee. The compensation voltages of up to 2000 V are produced with a commercial high
voltage power supply Iseg SHQ222m. All of the DC channels are heavily filtered to minimize
electrical noise at the ion.

The radio frequency voltages for the acousto-optic modulators (AOMs) are synthesized on
custom-made direct digital synthesis (DDS) boards. These are programmed by the computer
via an FPGA board named the Pulser [9]. The voltage for each AOM is amplified with a
MiniCircutis 2W or 5W amplifiers. All of the DDS boards are referenced to a common
800 MHz clock. Additionally, there are PID circuits for laser intensity stabilization and a
high current power supply to produce 12 A to heat up the calcium oven.

3.6.1 Electrode Diagonalization

In general, the voltages applied to specific trap electrodes produce the electric field in all
three directions at the ion position: Ex, Ey, and Ez. In order to improve usability, it is
desirable to find linear combinations of electrode voltages which change the electric field
only in a single direction. The linear combination is determined both by trap design and by
geometric imperfections when the trap is machined.

In the trap geometry we have two compensation electrodes two endcaps. Suppose that
to these electrodes we apply voltages C1, C2, D1 and D2 respectively. The most general
relationship between the applied voltages and the resultant electric fields at the ion position
can be expressed as a sum for some unknown matrix Mij:

Ei =
∑
j

MijVj , (3.9)

where Vj enumerates over the applied voltages: ~V = (C1, C2, D1, D2).
The problem is underdetermined since we apply 4 different voltages but need to fix only

3 electric fields. In order to have a unique solution, we constraint the problem further by
requiring that the axial trap frequency remains constant as we change the electric fields.

We start by recognizing that in the axial direction, the influence of the endcaps is much
stronger than that of the compensation electrodes. Therefore as the fist step it’s important
to differentiate between a common mode increase in the endcap voltages D+ corresponding

17Mini Circuits ZHL-20W-13
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to the increased axial trap frequency ωz and a differential voltage D− corresponding to
displacing the ion along the axis. We introduce the rotation angle θd to account for the
asymmetry between the electrodes:(

D−
D+

)
=

(
cos θd − sin θd
sin θd cos θd

)(
D1
D2

)
(3.10)

or, equivalently, (
D1
D2

)
=

(
cos θd sin θd
− sin θd cos θd

)(
D−
D+

)
. (3.11)

For a symmetric trap θd = 45◦ but experimentally we measured θd ≈ 53◦. This value was
determined by measuring the pairs of voltages (D1,D2) for which the ion remains fixed at a
given point along the axis.

The next step is to decouple the influence of the compensation electrodes, including their
possible projection on the z axis. This can be expressed, in general, as:

C1
C2
D−

 =


. . . . . . . . .
. . . . . . . . .
. . . . . . . . .


ẼxẼy
Ẽz

 . (3.12)

The tilde notation as in Ẽx indicates that the result is proportional to the electric field Ez
where the proportionality constant converts the units of the applied Volts to the produced
electric field.

Experimentally we measured sets of three voltages (C1,C2,D−) for which the ion remains
fixed on the camera. These points can be fit to a parameterized line in three dimensions:

~r = ~r0 + tv̂ . (3.13)

The direction unit vector v̂ defines the axis along which only Ẽy is changing while Ẽx and
Ẽz are held constant. The intercept ~r0 determines the unimportant fixed values Ẽx and Ẽz.
The parameter t is proportional to the electric field: t = Ẽy where we are free to ignore any
possible offset. Thus, for a change of the electric field ∆Ẽy, the voltages have to be adjusted
according to

∆C1 = v̂0∆Ẽy , (3.14)

∆C2 = v̂1∆Ẽy , (3.15)

∆D− = v̂2∆Ẽy , (3.16)

or in the matrix form: C1
C2
D−

 =


. . . v̂0

. . .
. . . v̂1

. . .
. . . v̂2

. . .


ẼxẼy
Ẽz

 . (3.17)



CHAPTER 3. EXPERIMENTAL SETUP 25

On the practical note, the slopes m0 = v̂0

v̂1
and m2 = v̂2

v̂1
can be easily ascertained from the

data be rewriting eq. 3.13 as two linear equations:

x =

(
v̂0

v̂1

)
y +

(
x0 −

v̂0y0

v̂1

)
= m0y + const , (3.18)

z =

(
v̂2

v̂1

)
y +

(
z0 −

v̂2y0

v̂1

)
= m2y + const . (3.19)

Then it follows that

v̂0 =
m0√

m2
0 +m2

1 + 1
, v̂1 =

1√
m2

0 +m2
1 + 1

, v̂2 =
m2√

m2
0 +m2

1 + 1
. (3.20)

The other columns of the coupling matrix have to be perpendicular to v̂ and to each other.
Our strategy is to arbitrary choose two such vectors u0 and w0 and allow for their joint
rotation about the v̂ axis. Particularly we pick:

~u0 = (−v1, v0, 0) , (3.21)

~w0 = v̂ × ~u0 = (−v0v2,−v1v2, v
2
0 + v2

1) . (3.22)

We use the Rodriguez formula to define the rotation matrix about the axis v̂ by an angle θ:

Rv(θ) =

 cos θ − v2
0(cos θ − 1) −v0v1(cos θ − 1)− v2 sin θ v1 sin θ − v0v2(cos θ − 1)

v2 sin θ − v0v1(cos θ − 1) cos θ − v2
1(cos θ − 1) −v1v2(cos θ − 1)− v0 sin θ

−v0v2(cos θ − 1)− v1 sin θ v0 sin θ − v1v2(cos θ − 1) (v2
0 + v2

1) (cos θ − 1) + 1

 .

(3.23)
Rotating the vectors u0 and w0 by the angle θ produces:

Rv(θ)u0 = uθ =

 −v1 cos θ − v0v2 sin θ
v0 cos θ − v1v2 sin θ

(v2
0 + v2

1) sin θ

 , (3.24)

Rv(θ)w0 = wθ =

 −v0v2 cos θ + v1 sin θ
−v1v2 cos θ − v0 sin θ

(v2
0 + v2

1) cos θ

 . (3.25)

All together we determine:C1
C2
D−

 =

−v1 cos θ − v0v2 sin θ v̂0 −v0v2 cos θ + v1 sin θ
v0 cos θ − v1v2 sin θ v̂1 −v1v2 cos θ − v0 sin θ

(v2
0 + v2

1) sin θ v̂2 (v2
0 + v2

1) cos θ

ẼxẼy
Ẽz

 . (3.26)

Combining the result with the initial endcap rotation we arrive at the final expression:
C1
C2
D1
D2

 =


1 0 0 0
0 1 0 0
0 0 cos θd sin θd
0 0 − sin θd cos θd



−v1 cos θ − v0v2 sin θ v̂0 −v0v2 cos θ + v1 sin θ 0
v0 cos θ − v1v2 sin θ v̂1 −v1v2 cos θ − v0 sin θ 0

(v2
0 + v2

1) sin θ v̂2 (v2
0 + v2

1) cos θ 0
0 0 0 1



Ẽx
Ẽy
Ẽz
D+

 .

(3.27)
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Figure 3.10: The circuit used to trigger the pulse sequences on the AC line. The power line
AC voltage is stepped down with a transformer, and rectified. The signal then reaches a
Schmitt trigger, which drives a fiber-coupled LED connected to the Pulser FPGA [9].

All of the rotations are parameterized by the two rotation angles θd and θ and two indepen-
dent components of the unit vector v̂.

3.6.2 Line Triggering

In our early measurements, the spectral width of the 729 nm carrier transition lines was
limited by magnetic field fluctuations. These fluctuations broaden the observed transition
because the line centers depend on the Zeeman shift produced by the instantaneous magnetic
field. Repeating the experiment many times then samples over the varying line centers. One
of the dominant source of such fluctuations is technical noise at the electrical grid frequency
of 60 Hz. To circumvent fluctuations at this frequency, we implemented the ability to trigger
the experiment sequences on the AC line. Triggering on the power line allows us to perform
the 729 nm spectroscopy pulses at the same phase of the AC voltage.

The line triggering circuit is presented on Figure 3.10. It samples the power line and
then generates a train of TTL pulses at a certain phase of the AC line that are sent to the
Pulser FPGA responsible for executing pulse sequences [9]. The TTL pulses are transmitted
over a fiber to provide electrical isolation and avoid ground loops.

The effect of line triggering can be seen on Figure 3.11. It shows two spectra of the
|S1/2,mj = −1/2〉 − |D5/2;mj = −5/2〉 transition recorded at different phases of the AC
line. Without line triggering, the spectroscopy pulse is performed at a random phase, broad-
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Figure 3.11: The frequency of the |S1/2,mj = −1/2〉−|D5/2;mj = −5/2〉 transition measured
for offsets of 0.0ms and 7.5ms from the line triggering TTL pulse. The corresponding phases
of the AC line correspond to the two extrema of the magnetic field fluctuations.

ening the line to the width between the recorded peaks, ∼2 kHz. With line triggering the
spectroscopic pulse is performed at the same instantaneous magnetic field and the measured
linewidth is reduced to ∼500 Hz18. Additionally, we have measured that line triggering also
improves the T2 coherence time on the |S1/2,mj = −1/2〉 − |D5/2;mj = −5/2〉 transition to
1.5 ms from below 500 µs

3.7 Experimental Control

Computer control of ion trapping experiments requires interacting with a large number of
individual hardware devices ranging from controlling the voltages supplied to the reference
laser cavities, to synthesizing pulse sequences of laser pulses applied to the ion to perform
experiments and analyzing ion images collected with a CCD camera. Some of the controlled
devices are commercially available with provided APIs or can be controlled with NI-VSA

18The reduced linewidth is likely limited by the laser spectral broadening due to phase noise in the
fiberoptic cables.



CHAPTER 3. EXPERIMENTAL SETUP 28

drivers, while much electronics hardware is custom-made and tailored for the specific ex-
periments. In the past, the standard way of controlling laboratory-scale experiments with
LabView has been found to not scale well with the complexity of the ion trapping experi-
ments. Once the code base reached a certain level of complexity, it became difficult to make
even small additions and to see the meaning and the structure behind LabView’s visual code
representation. For controlling the experiments in our laboratory, we have chosen to use
LabRAD - an open source experimental control software developed by John Martinis group
at UCSB who faced the same scalability challenges in the quantum computing experiments.

The main strength of LabRAD is the modularity of individual components making up
the experimental control. Instead of a single central program controlling all of the devices,
the experimental control is a network of individual programs called servers that each controls
a specific device or type of device. The servers abstract away the procedural steps of how
to communicate with devices or perform certain tasks. The available tasks for each server
are listed as commands callable by other programs connected to the LabRAD network.
Performing an experiment then simply requires executing a script that issues a sequence of
commands to the servers performing the required actions of setting hardware parameters,
data collection, saving etc. The servers support multiple simultaneous connections from
other programs. They are written in standard programming languages making use of object-
oriented programming paradigm.

The modular nature of LabRAD makes the individual components much easier to modify
and debug as they can be improved and tested separately from the rest of the system. The
individual servers controlling specific hardware devices are responsible for a singular task and
are easily reusable across different laboratories using the same hardware. We use GitHub
version control to keep track of code changes across the experiments in order to maintain a
single code base for every server. If there is no need to make improvements, the individual
servers can act as black boxes where it is possible to make use of the functionality without
ever reading through the server’s source code. In addition, LabRAD runs on all of the major
operating systems, providing an effective interface to devices that are restricted to work on
a specific platform.

At its core, LabRAD provides a protocol for how the separate programs making up the
experimental control communicate over TCP. The individual components, thus, do not have
to all run on the same computer as long as they belong to the same local area network. The
programs can be written in any language that confirms to the protocol, making it possible
to write the code using the object-oriented programming paradigm in stark contrast to the
LabView approach. We have primarily utilized the Python implementation of the LabRAD
protocol called pylabrad.

The technical descriptions of the experimental control software is provided in the Ap-
pendix A. We, first, describe the structure of all the servers used in the experiments and
their interactions. We then explain in detail several of our additions to the LabRAD experi-
mental control: the ScriptScanner Framework for scheduling, pausing or stopping individual
experiments, and creation of graphical user interfaces (GUIs) within the LabRAD frame-
work. For a thorough introduction to LabRAD please refer Markus Ansmann’s thesis [13]
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who co-developed LabRAD at UCSB with Matthew Neely. For more information, see the
GitHub Repository Wiki and links to LabRAD guides and tutorials therein.

3.8 Experimental Procedures

In this section we give a brief description of procedures commonly employed in the experi-
ments. The techniques of Doppler cooling and sideband cooling have become routine for ion
trapping experiments. Instead of reviewing those, here we focus on less standard procedures.

3.8.1 Frequency-resolved Optical Pumping

With an applied magnetic field, the ground state |S1/2〉 splits into two Zeeman sublevels:
|S1/2;mj = −1/2〉 and |S1/2;mj = +1/2〉. The goal of optical pumping is to prepare the
ion in one of the sublevels, namely |S1/2;mj = −1/2〉. Typically this is done by applying
σ-polarized laser light at 397 nm to optically pump the ion to the desired state. This requires
an additional laser beam, as linearly polarized 397 nm light is used for Doppler cooling. The
procedure of frequency-resolved optical pumping avoids this requirement by employing the
available laser light at 729 nm for optical pumping. The laser is detuned to be resonant to
the narrow transition between |S1/2;mj = +1/2〉 and |D5/2;mj = −3/2〉. Simultaneously,
we switch on the repumping laser at 854 nm. The ion returns to the ground state via the
short-lived P3/2 level. When it decays to the ground state it may end up in either of the
Zeeman substates, increasing the likelihood of it being found in |S1/2;mj = −1/2〉. We
typically switch on the optical pumping laser beams for a total duration of 2 ms.

3.8.2 Auto-crystallization

Trapped chains of ions occasionally melt, likely due to collisions with background gas or
instability in the governing equations of motion. The term melting refers to the analogy
between the ordered solid when the ions are in the chain and a disordered liquid. When
the ions melt, they lose their structural order and instead form an atomic cloud. The auto-
crystallization procedure is used to restore the ions back to the ordered state. When the ions
melt, their average kinetic energy rises, leading to a Doppler-broadened linewidths of the
atomic transitions. We detect the melting event by monitoring the fluorescence of 397 nm
light tuned closely to the resonance between S1/2 and P1/2 energy levels. The sudden increase
in the linewidth occurring during a melting event is detected via a drop in the measured
fluorescence. The events may also detected using the CCD camera by monitoring the total
intensity of the pixels corresponding to the ion positions within the chain. Once the melting
event is detected, the ions are crystallized again by shining 397 nm 220 MHz red-detuned
from the S1/2 − P1/2. The red-detuned light provides effective Doppler cooling of the broad
linewidth and effectively crystallizes the chain. Crystallization may also be achieved by

https://github.com/HaeffnerLab/Haeffner-Lab-LabRAD-Tools/wiki
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lowering the power of the confining RF voltage. However, we typically avoid this to prevent
thermal contraction and expansion of the trap electrodes.
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Chapter 4

Energy Transport

4.1 Introduction

Models of coupled oscillator chains are ubiquitous in physics as they provide a way to study
many-body behavior emerging from interactions among well-understood constituent parti-
cles. The diverse range of phenomena described by such models include Bose-Einstein con-
densation, equilibration in dissipative quantum systems, heat transport, friction in nanoscale
systems, and many others [14, 15, 16, 17, 8].

Historical interest in behavior of oscillator chain models was spurred by the Fermi-Pasta-
Ulam paradox [18, 19]. When a chain of oscillators has a linear nearest neighbor coupling
term, then the time evolution of the system can be found by describing the behavior in terms
non-interacting normal modes. The energy of the modes remains constant and the system
does not thermalize. Enrico Fermi, John Pasta, Stanislaw Ulam, and Mary Tsingou conjec-
tured that addition of a non-linearity to the coupling potential would give rise to ergodicity
and lead the system to eventually thermalize. They performed numerical simulations of the
model and found otherwise. Further work on the problem has led to discoveries of soliton
solutions in related non-linear systems and the concept of dynamical chaos.

The Fermi-Pasta-Ulam approach introduced a new tool of experimental mathematics:
performing numerical experiments to study the model dynamics when an analytical solution
is not attainable. This is effective for classical coupled oscillators and one can numerically
simulate time evolutions of hundreds of coupled oscillators. However in the quantum regime,
this is, in general, is no longer possible as the size of the possible solution space – the
Hilbert space – grows exponentially with the number of particles. As a solution to this issue,
Richard Feynman proposed using a well-controllable quantum system to simulate behavior
of the quantum model. The experimenter tunes the interactions of the controlled system to
match those of the model and simply observes the ensuing dynamics. This approach called
quantum simulations is promising for understanding quantum magnetism, superconductivity
and other topics.

Chains of trapped ions are one of the leading candidate systems for performing quantum
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simulations and studying quantum phenomena [20, 21, 22, 23, 24]. They can be well iso-
lated from the environment, exhibiting long coherence times. The interactions between the
ions, the amount of present non-linearity and decoherence can be precisely controlled with
additional optical potentials. In fact, chains of ions are already used to study quantum mag-
netism [21, 23, 24]. These experiments utilize the internal degree of freedom. Controlling the
motional degree of freedom, however, would allow to treat trapped ions an oscillator chain
model and to explore the rich associated physics. There have been numerous theoretical pro-
posals exploring oscillator chain models by using ion motion and inducing phonon-phonon
interactions. Here we focus on the proposals studying heat transport and thermalization:
topics similar to the ones pursued by Fermi-Pasta-Ulam but with additional focus on the
quantum regime.

Bermudez et al. [16] study how heat propagates across the ion chain when the ions on
the ends are coupled to heat baths of different temperatures. They find that depending on
the amount of disorder and dephasing in the system, the resultant temperature distribution
will deviate from the expected linear profile expected from Fourier’s law. A similar non-
linear temperature distribution is found in [15] where the authors also study how the system
equilibrates. Both [25] and [26] demonstrate the thermodynamic properties of ion chains are
controlled by the amount of present non-linearity induced by the linear to zigzag structural
phase transition. Finally, in [8], it is shown that a standing optical wave superimposed with
the ion chain significantly modifies the normal mode structure, thereby altering the energy
transport characteristics. The heat conduction in the resultant Frenkel-Kontorova model
was is studied in [27] with a periodic driving force.

Despite the richness of the exhibited physics, there have been no experimental realiza-
tions of the proposed models. Observing the phenomena requires long chains of ions, where
it becomes difficult to control the motion. In this Chapter we describe the first experiment
aimed at realizing the aforementioned models, providing an additional level of detail com-
pared to our publication [28]. Specifically, we observe how energy propagates in an ion chain
by performing a Newton cradle-like experiment. We prepare an out-of-equilibrium state of
the chain by quickly adding energy to the ion on one end of the chain. We then observe how
the energy propagates throughout the chain.

We begin the Chapter by reviewing the theoretical framework of local modes of ion
motion used in the experiment and the method used to measure the ion energy. In the
following section we describe numerical simulations used to model ion excitation and energy
propagation. We then interpret the experimental results and conclude by considering future
possible pursuits.
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Figure 4.1: The CCD image of a long linear ion chain. All of the ions are confined axially in
a single harmonic well. Due to the Coulomb repulsion among the ions, the spacing decreases
in the center of the chain.

4.2 Theory

4.2.1 Normal Mode Structure

In this section we consider the normal mode structure of the ion chain and calculate the
subsequent evolution after a single ion on end of the chain is displaced from its equilibrium
position. When a chain of N ions is confined in the harmonic potential of a Paul trap with
harmonic frequencies ωx, ωy, and ωz, the total potential energy V is given by the sum of
harmonic trap potential and and the Coulomb interaction:

V =
N∑
i=1

1

2
mω2
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i +

1

2
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2
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,

(4.1)

where e is the electron charge and m is the ion mass, and we have included a factor of 1
2

in the Coulomb term to prevent double counting of ion pairs. Minimizing potential energy
V with respect to the coordinates of every ion i, (xi, yi, zi), yields the equilibrium positions
(x0

i , y
0
i , z

0
i ). The CCD image of a trapped linear chain of ions is shown on Figure 4.1.

Considering the motion in only one of the radial directions, x, the potential energy V can
be expanded for small displacements about the equilibrium, qi = xi − x0

i .

V ≈ V0 +
∑
i

∂V

∂qi
qi +

1

2
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qiqj . (4.2)

The constant offset V0 is unimportant for equations of motion and will be ignored. At the
equilibrium position, the first derivative ∂V

∂qi
= 0. The third derivative ∂V 3

∂q3
i

is also zero by the

symmetry of the Coulomb potential. We then obtain:
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, (4.3)
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matching eq. 7 in [20], where we assumed that the radial trap frequencies are much stronger
than the axial, ωx � ωz, ωy � ωz, and the ions are arranged as a linear chain along the
z-axis with y0

i = x0
i = 0. The potential energy can then be written as

V =
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i=1
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We define the local oscillation frequency ωi,loc of ion i as

ω2
i,loc = ω2

x −
N∑
j=1
j 6=i

e2

4πε0m

1

|z0
i − z0

j |3
. (4.5)

The local oscillation frequency differs from the radial trap confinement frequency ωx by the
repulsive force from the other ions in the chain. This effect drops off as the cube of the
inter-ion distance and is, particularly, important in the middle of the chain where the ions
are closest. Thus, the local radial oscillation frequency will be minimal for the middle ion.
Furthermore, when the local oscillation frequency becomes zero, this soft mode leads to a
structural phase transition to the zigzag regime of the chain [29].

It is clear from eq. 4.4 that the local displacements qi are coupled. The system may be
diagonalized in terms of the N radial normal modes of the ion chain [12]. We enumerate the
normal modes ~vn in the order of decreasing eigenfrequencies ωn such that ~v1 always refers
to the center-of-mass mode with the corresponding eigenfrequency of ω1 = ωx. We consider
the normal mode decomposition when the leftmost is radially displaced from its equilibrium
position. The unit displacement can decomposed as the sum of radial normal modes with
coefficients cn:

~q = [1, 0, 0, . . . , 0] =
N∑
i=1

cn~vn. (4.6)

The normal mode decomposition is presented on Figure 4.2. We see that for long chains,
the higher order modes are not significantly excited. The excited eigenmodes will oscillate
at the corresponding eigenfrequencies, determining the subsequent time evolution of the ion
chain:

~q(t) =
N∑
i=1

cn~vn cos(ωnt) . (4.7)

The oscillation energy of the displaced ion will decrease once the excited normal modes add
destructively. At the rephasing time of the eigenmodes, the energy will come back to the
displaced ion.

The coupling times among the local ion excitations are easily determined by considering
the quantized version of the system [20, 30, 31] written in terms of local phonon creation
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Figure 4.2: We decompose a unit radial displacement of the leftmost ion in terms of the
radial normal modes of chain motion. Not all of the modes are equally excited. For longer
chains, only lower-ordered have significant excitation. Shown on the right are the radial
normal modes for a N = 5 chain. We can see that only the first three have a significant
projection onto motion of the leftmost ion.

and annihilation operators at site i denoted a†i , ai:
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N∑
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)
, (4.8)

where we have neglected fast-rotating non-energy conserving terms. The site-dependent
oscillation frequency and the tunneling amplitude are given by:
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where ∆z̄ ∼ O(1) is a dimensionless separation of ions in the units of the characteristic
length scale l [12]
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Z2e2

4πε0mω2
z

, (4.11)
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with Z = 1 referring to the number of elementary charges of the ion.
The cubic dependency of tunneling tij on the inter-ion distance makes the length of the

chain an important factor because for longer chains trapped at the same trap frequencies,
the leftmost ion is closer to its neighbor. We find that for our experimental trap frequencies,
the tunneling matrix element between the leftmost ion and its neighbor, t12, ranges from
2π × 6.7 kHz for a chain of 5 ions to 2π × 21.1 kHz for a chain of 25 ions.

The normal mode picture is valid when the non-linearities in the potential are insignificant
in the course of ion motion. To verify that this is the case for the regime of our experiments,
we performed numerical molecular dynamics simulations integrating the ion equations of
motion. The simulations are described in Appendix C.1. They do not rely on the normal
mode expansion as they include the complete Coulombic interaction as well as driven motion
of ions present in Paul traps. The time evolution predicted by the simulations matches those
given by equation 4.7, verifying the validity of the treatment. We explicitly calculate the
amount of non-linearity present in ion chains in Appendix C.2.

4.2.2 Fast Excitation

In order to create an out-of-equilibrium state of the ion chain by displacing the leftmost
ion, we need to add energy to the ion much faster that the coupling time, 2π/

∑
j 6=1 t1j.

This will prevent the energy flowing out from the ion before we have even completed the
excitation. For this, we have chosen the technique of pulsed excitation. The laser resonant
with a short-lived transition is switch off and on resonantly with the trap frequency [32, 33].
In this section we elaborate on a similar calculation we performed in [8] to calculate the
expected excitation rates for pulsed excitation methods and other available techniques.

We estimate the rate of energy addition with pulsed laser excitation by considering a
classical ion trajectory with initial amplitude y0 oscillating around y = 0 in a harmonic
potential V = 1

2
mω2

yy
2. Switching on a laser with saturation s, wavevector k resonant with

a transition with linewidth Γ produces a constant force F due to the laser light’s radiation
pressure:

F = h̄kΓρee , (4.12)

where the probability of finding the atom in the excited state ρee is given by

ρee =
s/2

1 + s+ (2∆/Γ)2
. (4.13)

Since ρee → 1
2

for s → ∞, the scattering of a highly saturated laser is given by F = 1
2
h̄kΓ.

When the force is applied to the ion, the equilibrium position of oscillation is displaced
to yeq = F/mω2

y. If the laser is switched on when the ion is at the leftmost point in its
trajectory, −y0, then after half of trap cycle it will reach the position y1 = y0 + 2yeq. At
this point, the laser is switched off to be switched on again half cycle later when the ion
is at position −y1. This process leads to a linear increase in oscillation amplitude and
a quadratic rise in energy with the number of pulses. After n pulses, the amplitude is
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yn = y0 + 2nyeq with the corresponding energy En = 1
2
mω2

y(y0 + 2nyeq)2. For the trap
frequency of ωy = 2π × 2 MHz and a saturated laser at 397 nm addressing the S1/2-P1/2

transition with Γ = 2π×22.4 MHz, the equilibrium shift yeq = 11 nm. During the first pulse,
the energy will rise by approximately 2 motional quanta: 1

2
mω2

y(2yeq)2 = 2.0h̄ωy and then
quickly grow quadratically with the number of pulses. In the first microsecond, of heating
already 8 quanta will have been added.

We compare the result for pulsed excitation to heating due the random photon scattering
and due to anti-viscous force of a blue-detuned laser. The heating rate due to the random
timing of absorption events and random directionality of spontaneous emissions is given in
the low velocity v ∼ 0 limit by [2]:

Ėh =
1

2m
(h̄k)2Γρee(v = 0)(1 + ξ) , (4.14)

where the emission directionality factor ξ = 2/5 for dipole radiation. This term is maximal
for a highly saturated beam ρee = 1/2, at which point Ėh ∼ 1.5h̄ωy/µs for the same trap
parameters at above. To estimate the effect of Doppler heating we expand the scattering
force for low velocities: F = F0 (1 + κv) with the prefactor F0 and the viscosity coefficient κ
are given by:

F0 = h̄kΓ
s
2

1 + s+ (2∆
Γ

)2
, (4.15)

κ =
8k∆
Γ2

1 + s+ (2∆
Γ

)2
. (4.16)

Only the velocity-dependent part of the force contributes to Doppler heating:

Ėdop = F0κ〈v2〉 . (4.17)

For an initial temperature T , 〈v2〉 = kbT
m

while the term F0κ is maximal when s = 1 + 4∆2

Γ2

and ∆ = Γ
2
. At these parameters,

Ėdop =
h̄k2

2

kbT

m
. (4.18)

If the initial energy is n̄ = 5 with kbT = h̄ωn̄, we have

Ėdoppler =
h̄k2

2m
n̄ ∼ 1h̄ω/µs . (4.19)

We have seen that the initial rates of energy addition for pulsed excitation are much higher
than for heating through random kicks, and Doppler heating. This calculation is confirmed
with the molecular dynamics code detailed in C.1 plotted in Figure 4.3. Pulsed excitation is
straightforward to implement, as there is no need to progressively adjust the laser detuning
or laser saturation to maintain optimal heating conditions.
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Figure 4.3: Results of a molecular dynamics simulation demonstrating that pulsed excitation
adds energy much faster that Doppler heating. This single-ion simulation starts with ion
stationary and located at its equilibrium position. Then we simulate the process of Doppler
cooling for 200 µs to achieve a realistic energy given by the Doppler temperature. From that
point on, we compare the ion kinetic energy after pulsed excitation and Doppler heating. Due
to the stochastic nature of laser-ion interaction, we average over 500 individual simulations.

4.2.3 Energy Readout

In this section we discuss the method of quantifying the energy of the ion motion. Similar
to the need for fast excitation, energy readout needs to be fast compared to the coupling in
order to accurately capture the dynamics. In this regime, we can ignore the coupling among
the ions and consider them as N independent harmonic oscillators:

H =
N∑
i=1

h̄ωx,ia
†
iai . (4.20)

After performing Doppler cooling, the local radial mode of every ion is in a thermal state
with a temperature n̄. The density matrix of the ion i, ρth

i , can be expressed in terms of the
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Displaced Thermal States

n
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n

Figure 4.4: The occupational probabilities for displaced thermal states of n̄ = 3, typical of
a Doppler-cooled ion. For displacement α = 0, the distribution reduces back to a thermal
state. For large displacements α2 � n, it approaches a coherent distribution centered at α2.

local phonon number basis |ni〉:

ρth
i =

1

n̄+ 1

(
n̄

n̄+ 1

)n
|ni〉〈ni| . (4.21)

The method of pulsed excitation is modeled as a displacement operator D(α) applied onto
the leftmost ion (i = 1) in the chain [34] for some complex amplitude α = |α|eiφ resulting
in a displaced thermal state of motion. Experimentally we do not control the phase of the
pulsed laser φ, yielding a diagonal density matrix of the first ion ρ1 after averaging over φ:

ρ1 =
1

2π

∫
dφ
(
D(α)ρth

1 D(α)†
)

=
∑
n

pdisp
n |n1〉〈n1| , (4.22)

with the occupational probabilities given by [35]:

pdisp
n =

(
1

n̄+ 1

)(
n̄

n̄+ 1

)n
e−
|α|2
n̄+1Ln

(
− |α|2
n̄(n̄+ 1)

)
, (4.23)
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Sideband Coupling Strength

n

⌦SB/⌦0

Figure 4.5: The sideband coupling strength ΩSB = Ωn,n−l in units of the carrier Rabi fre-
quency Ω0 for n = 0 shown for various red sidebands l = −1 to l = −5 as a function of
the motional mode number n with the Lamb-Dicke parameter η = 0.05. For every sideband
order the strength monotonically increases with n until turning over, reducing back to zero
and reviving. The experiments discussed here are conducted for the range of motional modes
shown with the shaded region.

where Ln is the Laguerre polynomial of the nth degree. The occupational probabilities for
several displaced thermal states are shown in Figure 4.4. We measure the displacement |α|
of the ion i by driving the red motional sideband of the transition between |g〉, and |e〉.
This interaction couples the electronic and motional states of the ion in the form |g〉|ni〉 and
|e〉|ni−1〉 with Rabi frequency Ωn,n−1, which depends on the particular motional state n [2]:

Ωn,n−l = Ω0|〈n− l|eiη(a+a†)|n〉| , (4.24)

where Ω0 is the scale of the coupling strength and η is the Lamb-Dicke parameter. The
sideband coupling strengths are shown in Figure 4.5. In the regime of our experiment, the
Rabi frequency Ωn,n−1 increases with the n, as shown by the shaded region of the Figure.
In this regime, the energy can be determined by monitoring the strength of the sideband
interaction. Specifically, we measure the probability to find the ion in the electronic ground
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Figure 4.6: Shown are Rabi Flops on the first red sideband for displaced thermal states
with various displacements α. For low enough displacements, the strength of the sideband
excitation measured at a fixed time along the black dotted line can be directly converted to
α. When the displacement excites motional modes outside of the shaded region of Figure
4.5, the sideband strength drops and the displacement can no longer be uniquely determined
(dashed yellow line). In these cases, one can monitor the strength of higher order sidebands
to determine the displacement.

state |g〉:

Pg(t) =
1

2

[
1 +

∞∑
n=0

pdisp
n cos(Ωn,n−1t)

]
. (4.25)

First, we extract the initial temperature, n̄, without pulsed excitation. The knowledge of
n̄, the laser intensity, and the trapping parameters allows us to numerically invert Eq. 4.25.
This way, as shown in Figure 4.6 we directly convert the measured ground state probability
Pg(t) to the displacement |α|.
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4.3 Experimental Results

In this section we describe the energy transport experiment, employing the theoretical tools
presented earlier to analyze the results. The experiment proceeds as follows: a chain of N
40Ca+ ions is confined in a harmonic potential of a linear Paul trap with trap frequencies
(ωx, ωy, ωz) = 2π× (2.25, 2.0, 0.153) MHz. A laser at 397 nm is red-detuned with respect to
the S1/2-P1/2 transition to perform Doppler cooling of the whole chain. An intense beam at
397 nm is tightly focused on one end of the chain, as shown in Fig. 4.7 for pulsed excitation of
a single ion1 . After the system evolves freely for a time τ , the ion energy is locally measured
with a 729 nm laser tuned to the red motional sideband. The pulsed excitation time is fixed
at t = 7.5 µs while the duration of sideband interaction for energy readout is 10 µs. Both are
short compared to the characteristic coupling time of the leftmost ion 2π/t12, as calculated
in section 4.2.1, to address only the local mode of motion.

The results for the 5-ion chain and the comparison to theory are presented in Fig. 4.8. The
experimental data are in agreement with the normal mode dynamics presented in equation
4.7 where the leftmost ion is initially displaced in the radial direction. The theory has no
free parameters and uses independently measured trap frequencies as inputs.

We repeat the experiment with progressively longer chains. The energy of the right-
most ion during the sequence of experiments is presented in Fig. 4.9. We observe clear
revivals of the energy even for long chains. With the increase of the length of the ion chain,
only a few additional eigenmodes are populated with the local excitation. Once again, the
eigenfrequencies of the populated eigenmodes rephase resulting in observed revivals.

For all ion numbers, the time it takes for the excitation to propagate across the entire
chain is comparable to the coupling rate between nearest neighbors, 2π/t12. This is explained
by the fact that the excitation does not simply hop from one ion to another along the chain.
The intuition about excitation hopping does not apply because all of the ions are coupled
to each other due to the long range of the Coulomb interaction. It is more appropriate
to analyze the dynamics in terms of a normal mode picture. The initial excitation creates
a superposition of the normal modes, and the energy is transferred across the chain after
rephasing of some of the excited modes of motion and is, thus, comparable to the normal-
mode frequency splitting.

Interestingly, we observe that the timescale of the revivals is similar even for long ion
chains. This is explained by the fact that the eigenfrequencies of the populated 10 normal
modes have only a weak dependence on the ion number. For example, the splitting between
the eigenfrequencies of the modes ~v1 and ~v5 increases by ∼ 3% as the length is increased
from N = 5 to N = 25. It can be seen that the revival features become sharper for longer
chains: more normal modes participate in the dynamics and the ions are spaced closer

1The pulsing is implemented by using an RF switch (Minicircuits ZYSWA-2-50DR) to switch off and on
the 397 nm laser beam passing through an AOM double pass. The switch is driven with a function generator
(Rigol DG4062). The advanced features of Rigol DG4062 make it possible to control the pulsing time with
an external TTL pulse as well as the phase of the generated square wave. The response time of the AOM
was minimized by reducing the waist of the laser beam.
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Figure 4.7: The schematic of the energy transport experiment. (a) The pulsed excitation
beam (blue) rapidly adds energy to the ion chain. After a free time evolution, the energy
can be read out anywhere along the chain with a probe at 729 nm (red). Both beams are at
45◦ with respect to the radial modes of motion. (b) The CCD image of the ion chain with
37 ions with the tightly focused excitation beam.

together increasing the coupling rate. The faster coupling also leads to a higher energy of
the rightmost ion for evolutions times τ ∼ 0 µs: some energy has already transferred from
the excited ion to the rightmost ion by the time the pulsed excitation is complete.

Even for very long chains, the energy revivals persist for a long time compared to the
coupling strength. This is illustrated by Fig. 4.10. This measurement was performed with 37
ions in a partially zigzag configuration as shown in Fig. 4.7b. The energy revivals continue
even after an evolution time of τ = 40 ms. For times longer than 40 ms the dynamics wash
out, likely due to the instability of the trapping frequencies. Consecutive measurements
apart by 12 minutes for the evolution time τ = 40 ms revealed a 20 µs shift in the position
of the revival peak, corresponding to 5× 10−4 change in the coupling strength, ω2

z/ωx. The
trap frequencies, particularly the radial frequency ωx, are not expected to be stable at this
level.

The measurement presented in Fig. 4.10 shows a large difference in the excitation between
adjacent ions: the rightmost ion in the chain and its neighbor. While the energy efficiently
transfers from the leftmost kicked ion to the rightmost ion, the ion second from the right
does not get as energetic. This phenomenon follows from the normal mode decomposition
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Figure 4.8: Energy transport in a chain of 5 ions. The leftmost ion is given a kick and
its energy is measured after a subsequent evolution time τ as shown in (a). The energy
revivals occur at the rephasing times of the eigenfrequencies and approach the energy of
the initial excitation. Plot (b) shows the energy of the rightmost ion: initially unexcited
the energy from the kick is rapidly transferred across the chain. The energy of both ions
evolves according to the populated normal modes of motion. Each point is a result of 500
measurements resulting in the denoted statistical error bars. The points are connected to
guide the eye. Plots (c) and (d) show the kinetic energies of the ions from the molecular
dynamics simulations.

of the initial excitation: the excited normal modes have a small projection onto the motion
of the ion second from the right. In the local mode picture, it can also be seen that the
efficient transfer of energy occurs because the kicked and the rightmost ion have the same
local trap frequency leading to an on-resonant coupling. However, the local frequency of the
ion second from the right is different (by approximately the next neighbor coupling), leading
to an off-resonant excitation.

4.4 Future Pursuits

The presented results demonstrate the first steps towards realizing the theoretical proposals
relying on the motional degree of freedom of long ion chains. The results are in agreement
with the theoretical model of normal mode dynamics, demonstrating a sufficient level of
control of the experimental parameters. The system is well isolated from the environment –
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Figure 4.9: The energy of the rightmost ions measured for progressively longer chains. As
seen by position the first peak, the rate of energy transfer across the chain increases slightly
due to the reduction in the inter-ion distance. Due to the faster coupling for longer chains,
the feature size of the revivals decreases, as can be observed from the width of the first revival
peak. Also, the average measured energy drops for longer chains: with a greater number of
participating normal modes, the excitation is distributed among more ions.
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Figure 4.10: The energy revivals measured for the rightmost ion (circles) and ion second
from the right (triangles) in a 37-long ion chain partially in the zigzag configuration. The
dynamics extend up 40 ms and are likely limited by trap frequency instabilities. The energy
from the kicked ion does not efficiently transfer to the ion second from the right. The general
rise in the measured energy corresponds to background heating during the free evolution.

an important ingredient for the proposed models – as the observed energy transport dynamics
go on for up 40 ms.

With the addition of the second cooling beam, it should be possible to realize a steady
state energy distribution, and the measure the temperature profile along the chain. Similar
to the requirement of heating, the cooling mechanism also has to be fast compared to the
coupling. While it may be difficult to speed up the typical time scale for Doppler cooling on
the order of 1 ms, the requirement may be satisfied instead by the reduction in the ion-ion
coupling with a lower axial confinement frequency.

The question arises whether it is possible to go beyond the normal mode dynamics. It
has been shown theoretically than non-linearities may significantly alter the energy transport
properties of the system. Non-linearities in the potential can lead to additional resonances
and coupling among the normal modes. The mode coupling involves energy redistribution
among the excited normal modes and, perhaps, eventual thermalization of the ion chain.
However, as we show in appendix C.2, the intrinsic non-linearity due to the Coulomb in-
teraction in a linear chain is small. A stronger non-linearity may be engineered with an
additional standing light wave inside a laser [8]. Additionally it may be possible to repeat
the presented experiments while exciting the soft mode present in the structural transition
to the zigzag mode. In that situation the non-linearity is much stronger compared to the
low local confinement frequency of the soft motional mode.

One disadvantage of the present pulsed heating technique is that it requires scattering
photons, heating the ion during the generated displacement operation. This can be avoided
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by exciting the ion with a traveling wave resonant with the trap frequency and generated
either with Raman beams detuned from the S1/2 − P1/2 transition or by simultaneously
driving both the red and the blue sideband using the 729 nm laser. Another advantage of
exciting the ion with the 729 nm traveling wave is that the phase of the energy readout
pulse can be controlled relative to the phase of the initial excitation. Such phase control is
the basis of the recently proposed method to implement multidimensional spectroscopy with
trapped ion chains [36].
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Chapter 5

Detection of Quantum Correlations

5.1 Introduction

Detection of quantum correlations between two quantum systems typically requires control
and access of both of the systems. This is well exemplified by the procedure of quantum
state tomography. Each qubit needs to be measured in three orthogonal bases of the Bloch
sphere, corresponding to the control requirement of performing single qubit rotations. Every
subsystem needs to be accessible because the density matrix of a N -qubit system requires
measurements in every combination of the basis vectors of the constituent qubits. Performing
the full procedure of state tomography requires a total of 3N measurements, which scales
rather unfavorably for large quantum systems.

A natural question to pose is whether it is possible to prove the presence of quantum
correlations between two subsystems of a bipartite quantum system if the experimenter does
not have access to one of the subsystems. The term access here refers to the ability to perform
single qubit rotations or measurements. This situation arises in a multitude of scenarios:
the experimenter may be presented with a large ensemble of quantum spins, for instance,
where it is not technically possible to perform operations on all of the spins. In the context
of quantum communication protocols, each party only has access to their part of the shared
quantum state. Most generally, whenever a quantum system interacts with its environment,
it is considered an open quantum system. By definition, the system’s environment is not
accessible, yet the presence of quantum correlations between the system and the environment
can play a large role in the system dynamics.

At first brush, it seems implausible to be able to observe quantum correlations with lim-
ited access. It is well known, for instance, that in the case of a Bell-state |Ψ〉 = |00〉 + |11〉
nothing can be said about the presence of entanglement from local measurements of only
one particle. Tracing out the second spin results in a mixed state of the first particle:
ρ0 = |0〉〈0|+ |1〉〈1| and, hence, in the absence of additional knowledge, local measurements
yield no information about the entanglement. In this Chapter we present a protocol, pro-
posed by Manuel Gessner and Heinz-Peter Breuer [37, 38] to accomplish this very task:
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Figure 5.1: The open quantum system S is interacting with an inaccessible environment
E. Together, they form a closed quantum system described by the density matrix ρ. The
reduced density matrix of S is calculated by tracing out the environment E.

witness quantum correlations between two quantum systems without access to one of them.
The method relies on observing the dynamics of the accessible system in the presence of a
unitary time evolution that depends on the presence of quantum correlations between the
two quantum systems. After proposing the protocol, Manuel Gessner worked together with
us to realize the ideas experimentally.

In this Chapter, we first review the protocol for local detection of quantum correlations
and then describe the experimental implementation of the protocol using two degrees of
freedom of a single trapped ion [39]. The intention is to elaborate on the published results,
providing more detail and intuition.

5.2 Local Detection Protocol

We present the protocol by employing the formalism of open quantum systems [40]. As
shown in Fig. 5.1, we consider two quantum systems S and E where the system E is the
inaccessible environment of the open quantum system S. The goal is to determine whether
or not there exist quantum correlations between S and E. Since the environment is not
accessible, we are only allowed to perform operations and measurements locally on S, hence
the name of local detection protocol.

The protocol is depicted in Fig. 5.2. We start with the joint state of both quantum
systems S and E. The state may contain quantum correlations at time t = 0 and is described
by the density matrix ρ(0). The protocol establishes the presence of quantum correlations by
comparing the time evolution of the accessible system S with quantum correlations between
S and E with the situation when the initial correlations are removed. The protocol consists
of three steps: The first step is to subject the system to a unitary time evolution for a time
t, U(t) such that ρ(t) = U(t)ρ(0)U(t)†. The local part of the system, S, at times 0 and t are
found by tracing out the environment: ρS(0) = TrE{ρ(0)} and ρS(t) = TrE{U(t)ρ(0)U(t)†}.
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Figure 5.2: The protocol for local detection of quantum correlations. The density matrix ρ
of the joint system of S and E is subjected to the unitary time evolution U(t). Additionally,
the dephasing operation Φ removes all quantum correlations from ρ producing a state ρ′.
In both cases, the state of the accessible system ρS is found by tracing out the inaccessible
environment. The presence of quantum correlations in ρ is established if the dephasing
operation modifies the time evolution of ρS.

The evolution of ρS may not be unitary as some information may be flowing to or from
the environment. In the case where S and E are statistically independent at time t = 0, the
evolution of ρS will be described by a dynamical map, which is a convex-linear, completely
positive and trace-preserving quantum operation [40]. In this case, it is common to use
master-equation methods to predict the time evolution of the open quantum system. If
there are initial quantum correlations, then these methods can no longer be employed. In
general, the time evolution of ρS will depend on the presence of initial quantum correlations
between S and E. The local detection protocol exploits this property in order to witness
the presence of initial quantum correlations.

The second step of the protocol is to apply an operation Φ to the accessible system S.
This operation is called the dephasing operation and will be discussed in more detail below.
The dephasing operation removes all quantum correlations between S and E, producing a
new joint density matrix ρ′(0) but it does not alter the initial reduced density matrices of
either quantum system: ρ′S(0) = ρS(0), ρ′E(0) = ρE(0). The dephased system is subjected
to the same time evolution U(t), producing a new reduced density matrix ρ′S(t) after the
interaction time t.

The third and final step of the protocol is to compare the two resultant density matrices
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ρS(t) and ρ′S(t). If the two are equal, then nothing can be concluded about the presence of
initial quantum correlations in ρ. However, if the reduced density matrices differ, then the
initial state contained quantum correlations. To see why, consider that the reduced system
S started in the same initial state ρS(0) = ρ′S(0) and yet became different after evolving for
time t. Therefore the dephasing operation must have been responsible for this change. Since
its only effect is to remove quantum correlations from the state ρ, quantum correlations must
have been present in the initial state ρ, when the dephasing operation was applied.

We have not yet discussed how it is possible to perform the dephasing operation Φ, which
removes all quantum correlations between the environment E and the open quantum system
S without altering either reduced density matrix. This is accomplished by performing state
tomography of the open quantum system S to measure ρS(0) and calculating the eigenvec-
tors πµ. Then the dephasing operation Φ is defined as a projection onto the calculated set
of eigenectors: ρ′ =

∑
µ (πµ ⊗ I) ρ (πµ ⊗ I). Defined this way, the dephasing operation has

several important properties. It is a local operation of the accessible system S as shown
explicitly by applying the identity operation I onto the environment. The dephasing op-
eration does not alter the state of S because it is a projection onto its own eigenbasis.
However, as explicitly proven in [38], the dephasing operation removes all quantum correla-
tions between S and E. The procedure of projection onto the set of eigenvectors of ρS(0)
can be interpreted as a non-selective measurement. In a non-selective measurement, the
experimenter performs a quantum measurement of the system ρS to project the system onto
the measurement eigenbasis. This may require rotating the state of the system such that
the measurement eigenbasis coincides with the eigenvectors of ρS(0). We will discuss the
experimental realization of this operation in detail in the next section.

We illustrate the action of the dephasing operation by considering a simple example of
a quantum-correlated state. Suppose that the initial quantum correlated state |Ψ〉1, where
the first qubit is the system S and the second is E, is:

|Ψ〉 =
3

5
|00〉+

4

5
|11〉. (5.1)

The density matrix ρ is readily computed,

ρ = |Ψ〉〈Ψ| = 1

25


9 0 0 12
0 0 0 0
0 0 0 0
12 0 0 16

 (5.2)

with the off-diagonal terms are the quantum coherences between the system S and E. The

1This state is chosen rather than a simpler Bell state |Ψ〉 = 1√
2

(|00〉+ |11〉) to avoid the technical issue

of degenerate eigenvalues of the reduced density matrix ρS . This theoretical point is of little importance to
the experimental realization of the protocol.
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reduced density matrices are calculated to be the same due to the symmetry of the state:

ρS = TrE{ρ} =
1

25

(
9 0
0 16

)
(5.3)

ρE = TrS{ρ} =
1

25

(
9 0
0 16

)
(5.4)

The diagonal form of ρS means that the eigenvectors are given by the bases vectors
π1 = |0〉 and π2 = |1〉. The dephasing operation applied to the system S is then defined as
a projection operation onto these eigenvectors:

ρ′ = (|0〉〈0| ⊗ I) ρ (|0〉〈0| ⊗ I) + (|1〉〈1| ⊗ I) ρ (|1〉〈1| ⊗ I) (5.5)

=
1

25


9 0 0 0
0 0 0 0
0 0 0 0
0 0 0 16

 . (5.6)

We see that indeed the dephasing operation has removed all the quantum correlations. How-
ever, it has not affected the local reduced density matrices:

ρ′S =
1

25

(
9 0
0 16

)
= ρS , (5.7)

ρ′E =
1

25

(
9 0
0 16

)
= ρE . (5.8)

We have seen that by observing a difference in the evolution of the accessible system ρS
with and without dephasing, we are able to establish the presence of quantum correlations
in the initial state ρ. The protocol never makes use of the inaccessible environment, all of
the required operations, including the dephasing operation, are performed on the accessible
system S. It is important to emphasize that if we observe no difference between ρS and
ρ′S, it does not mean that there were no initial quantum correlations. It is possible that
the chosen unitary time evolution U(t) was simply not sensitive to the presence of quantum
correlations.

The protocol never assumes that the systems are in a pure quantum state. However,
if the system were in a pure state, then the detected quantum correlations correspond to
entanglement between the two states. For mixed states, the detected correlations correspond
to the concept of quantum discord. In the next section, we present the experimental imple-
mentation of the local detection protocol using a single trapped ion. The experiments were
performed for both quasi-pure and mixed states, confirming the validity of the protocol in
both regimes.
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Figure 5.3: The ion’s electronic state is chosen to be the accessible system S while ion’s
harmonic motion in the trap plays the role of the inaccessible environment E.

Protocol Implementation
Open quantum system S Ion electronic state
Inaccessible environment E Ion motional state
Dephasing operation Φ AC Stark shift with 397 nm laser
Unitary evolution U(t) Blue sideband interaction

Table 5.1: Summary of the experimental implementation of the local detection protocol.

5.3 Single Ion Demonstration

The goal of the experiment was to implement the local detection protocol described above.
The realization uses a well-studied and precisely controlled system of a a single trapped ion.
Verifying the protocol’s validity using a well-understood system paves the way for its use in
more complex scenarios.

5.3.1 Choice of Physical Systems

A number of choices had to be made regarding the protocol’s implementation. The summary
of these selections is presented in Table 5.1. The protocol requires two quantum systems
S and E, where the quantum state of the system S is subject to arbitrary operations and
measurements. The choices for these are shown in Fig. 5.3. We chose the electronic state
of the ion to represent the system S. It is a two level system consisting of the ground state
|g〉 = |S1/2,mj = −1/2〉 and the long-lived excited state |e〉 = |D5/2,mj = −5/2〉. All of the
state operations required for the protocol have been demonstrated with high fidelities in the
context of quantum information processing [41]. The inaccessible environment E is modeled
by the one-dimensional harmonic oscillator motion of the ion in the trap.

We need to generate quantum correlations between the chosen quantum states in order
to detect their presence. This is done with the blue sideband interaction of the Jaynes-
Cummings Hamiltonian produced with the 729 nm laser tuned to the first blue motional
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sideband [2],

U(t) =
h̄

2
Ω0η

(
â†σ+e

iφ + âσ−e
−iφ) , (5.9)

where Ω0 is the carrier Rabi frequency, and η is the Lamb-Dicke parameter. The same
interaction is chosen for the unitary time evolution U(t) that distinguishes between the
dephased and the undephased systems. Aside from the unitary interaction, we abstain from
performing any operations on the ion motion, as we are not allowed to access the environment
in the course of the protocol.

According to the protocol, the dephasing operation requires performing a non-selective
measurement in the eigenbasis of the electronic system. Performing a non-selective mea-
surement involves reading out the electronic state of the ion, a process that may involve
scattering many photons off the ion and affecting the inaccessible ion motion. We have,
therefore, chosen a different way of dephasing the ion by using AC Stark shift generated by a
far-detuned laser. Mathematically equivalent to a non-selective measurement, the dephasing
via the AC Stark shift will scatter photons with a very small probability and will not disturb
the motional degree of freedom2.

5.3.2 Dephasing with AC Stark Shift

To perform the dephasing operation in the {|g〉,|e〉} basis, we use a laser near 397 nm tightly
focused onto the ion and far-detuned from the S1/2−P1/2 transition, ∆ = +2π× 400GHz as
shown in Figure 5.4. With the coupling strength characterized in terms of the Rabi frequency
Ω, the effective Hamiltonian for the AC Stark shift in the far-detuned regime is [42]:

Hac = − h̄Ω2

4∆
(|p〉〈p| − |g〉〈g|) , (5.10)

where |p〉 denotes the P1/2 electronic state. We analyze this interaction using the following
bases of three relevant energy levels:

|e〉 =

 1
0
0

 , |p〉 =

 0
1
0

 , |g〉 =

 0
0
1

 . (5.11)

Assuming that the P1/2 electronic state is not populated and there are no initial coher-
ences between the P1/2 energy level and the qubit, we compute the effect of applying the

2The dephasing operation could still be implemented by measuring the electronic state but the procedure
requires some additional complexity. To dephase the system in the {|g〉,|e〉} basis, we need to be able to
project onto those electronic states. Projecting the ion onto the dark state |e〉 does not affect the ion motion
as no photons are scattered during state readout. Projection onto the ground state |g〉 may be implemented
as a π-pulse to rotate the quibit to |e〉, state readout to project the system into |e〉 followed by another π
rotation back to the ground state. The subsequent time evolution of the system would need to be weighted
according to the obtained measurement probabilities.
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Figure 5.4: The AC Stark shift is generated with the laser at 397 nm blue-detuned from the
S1/2 − P1/2 transition by ∆ = +2π × 400GHz.

Hamiltonian Hac for a time t on a general density matrix ρ representing the three-level ion,

ρ =

 ρee 0 ρeg
0 0 0
ρge 0 ρgg

 . (5.12)

The density matrix evolves as follows:

ρ(t) = e−iHact/h̄ρeiHact/h̄ (5.13)

=

 1 0 0

0 e
iΩ2

4∆
t 0

0 0 e−
iΩ2

4∆
t


 ρee 0 ρeg

0 0 0
ρge 0 ρgg


 1 0 0

0 e−
iΩ2

4∆
t 0

0 0 e
iΩ2

4∆
t

 (5.14)

=

 ρee 0 ρege
iΩ2

4∆
t

0 0 0

ρgee
− iΩ

2

4∆
t 0 ρgg

 . (5.15)

When the AC Stark shift is applied, the populations of the electronic states |g〉〈g| and
|e〉〈e| are not affected but the coherence evolve with the frequency Ω2/4∆. The precession
frequency Ω2/4∆ ∼ 2π×40kHz was measured by performing a Ramsey-type experiment with
varying duration t of the AC Stark shift interaction, see Figure 5.5. From this, we calculate
the coupling strength, Ω ∼ 2π×250 MHz corresponding to the saturation parameter s ∼ 255
where the saturation parameter is defined as s = 2Ω2/Γ2 where Γ = 1/τ is the linewidth
of the P1/2 energy level with the lifetime τ ∼ 7.1ns. The saturation parameter s can be
expressed in terms of the transition saturation intensity s = I/Isat [43] with the saturation
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Figure 5.5: We perform a Ramsey-type experiment to measure the precession frequency of
the Bloch vector Ω2

4∆
due to the AC Stark shift from a far-detuned laser. The initial π

2
pulse

on the carrier transition creates a superposition state Ψ = 1√
2

(|g〉+ i|e〉). Then the far-
detuned laser at 397 nm is applied to the atom for a variable interaction time t, after which
the y-component is the Bloch vector is measured with an additional carrier π

2
pulse. In this

realization, the precession frequency is extracted from a sinusoidal fit to be Ω2

4∆
∼ 2π×49kHz.

The contrast of 0.91 reflects imperfections in state preparation and qubit rotations.

intensity Isat:

Isat =
π

3

hc

λ3τ
, (5.16)

where c is the speed of light and the transition wavelength is λ = 397 nm, yielding Isat ∼
46.8 mW/cm2. The total applied laser power was P ∼ 500 µW, indicating that the beam
waist was approximately 5 µm.

In order to perform the dephasing operation, we sample over n = 10 different time AC
Stark shift durations tk evenly spaced between t1 = 0 and Ω2

4∆
tn = 2π with the maximum in-

teraction time tn ∼ 25 µs. Averaging over these durations removes the off-diagonal coherence
terms in the density matrix, yielding the dephased state ρ′S(0):

ρ′S(0) = TrE

[
1

n

∑
k

(
e−iHactk/h̄ ⊗ I

)
ρ(0)

(
eiHactk/h̄ ⊗ I

)]
. (5.17)
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The time-evolved dephased density matrix ρ′S(t) is calculated as the average time evolution
of the n samples:

ρ′S(t) = TrE

[
1

n

∑
k

U(t)
(
e−iHactk/h̄ ⊗ I

)
ρ(0)

(
eiHactk/h̄ ⊗ I

)
U(t)†

]
. (5.18)

An intuitive way of picturing the dephasing implementation is that the AC Stark shift rotates
the state vector in the x− y plane of the Bloch sphere. By averaging over all of the rotation
angles between 0 and 2π, we calculate the dephased state corresponding to the center of the
Bloch sphere.

The far detuning of the applied laser ensures that the motional degree of freedom re-
mains nearly unaffected. The expected number of scattered photons during the maximum
interaction time of tn ∼ 25 µs is Γρpptn ∼ 3.5× 10−4 with the probably of finding the ion in
the P1/2 state, ρpp is given by [2]:

ρpp =
s/2

1 + s+ (2∆/Γ)2
, (5.19)

where Γ is the width of the P1/2 energy level, Γ = 1/τ ∼ 2π × 22.4 MHz.

5.3.3 Experimental Results

The experiments realizing the local detection protocol proceed as follows: first the motional
state of the ion is prepared either in a thermal state with Doppler cooling or close to the
ground state with additional sideband cooling. Then we use the blue sideband interaction
U(t) for a preparation time t0 to create quantum correlations between the qubit and the ion’s
motion. At this point, we perform state tomography of the electronic state to determine the
correct eigenbasis for the dephasing operation. We then apply the same blue sideband
interaction U(t) for the excitation duration time t1 to compare the time evolution of the
electronic state with and without dephasing.

The results for the sideband-cooled case with preparation time of a π
2

pulse in the blue
sideband, t0ηΩ0 = π

2
presented in Figure 5.6. State tomography of the state after the

preparation pulse indicates that the density matrix is diagonal in the {|g〉,|e〉}, basis. This
is expected for the blue sideband interaction. For example, after tracing out the motional
degree of freedom of the prepared state Ψ = |g, 0〉 + i|e, 1〉, the density matrix ρS(0) will
have no off-diagonal terms. The diagonal form of ρS(0) means that for dephasing we can
use the AC Stark shift method without needing additional single qubit rotations. We also
performed state tomography after the dephasing operation to confirm that the measured
density matrices and the dephasing operation does not disturb the locally accessible system:
ρS(0) = ρ′S(0).

We executed the local detection protocol with varying length of preparatory pulses, as
shown in Figure 5.7 for preparation times of t0ηΩ0 = π and t0ηΩ0 = 3π/2. In the case of
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Figure 5.6: Comparing the dephased (blue points) and the undephased time (red points)
evolutions when starting close to the motional ground state n̄ = 0.2. The error bars are
the statistical errors for n = 1000 readouts, σ =

√
p(1− p)/n. The deviation between the

two time evolutions proves the presence of quantum correlations in the prepared state. The
undephased curve is fitted to a theoretical model for Rabi flopping (red curve) and the fitted
parameters are used to predict the time evolution of the dephased curve under the same blue
sideband interaction (dashed blue line). For more details, please refer to the experimental
publication including the supplementary information [39].

a perfect π pulse on the sideband, there should be no quantum correlations between the
electronic and the motional states. The small measured deviation between the dephased
and the undephased curves is due to the finite initial temperature: if the motion is not all
initially in the ground state then some correlations remain.

The protocol makes no assumptions whether the system or the environment are in a pure
quantum state. In fact, we confirmed that the protocol reveals the presence of quantum
correlations for mixed states motion as shown in Figure 5.8. In this case, we did not perform
sideband cooling and started with the thermal state of the environment, n̄ = 5.9.

It is possible to use the measurements to extract quantitative information about the
present quantum correlations. As shown in [38], the maximum of the trace distance between
the dephased and the undephased states (equivalent to the maximum difference in the pop-
ulation of the excited states) provides the lower bound for quantum discord. Interestingly,
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Figure 5.7: Comparing the dephased and undephased time evolutions after a preparatory π
pulse (left) and 3π/2 pulse (right) on the blue sideband. After the π pulse, there should be
little quantum correlations present, consistent with little deviations between the two curves.
The quantum correlations are again present after the 3π/2 pulse and are revealed by the
protocol. The plots follow the conventions of Figure 5.6.

Figure 5.8: Local detection protocol applied with a thermal state of motion still reveals the
presence of quantum correlations. The plot follows the conventions of Figure 5.6.
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the detected lower bound comes close to actual amount of correlations expected from theory.
The reader can refer to [39] for a complete discussion.

5.4 Summary

In this section we have presented the first experimental realization of the local detection
protocol, verifying that it reveals quantum correlations in both pure and mixed states. We
have experimentally shown that the presence of initial quantum correlations can play a large
role in determining open system dynamics. The main strength is of the protocol is its ability
to detect quantum correlations when the environment is not accessible. One of the most
important presented features is that the measurements provide quantitative information
about quantum correlations, making a direct connection between experimental results and
the theoretical notion of quantum discord. The maximum measured deviation between the
dephased and the undephased time evolutions directly gives the lower bound for the amount
of discord initially present between the open quantum system and the environment.

It is important to emphasize that should the protocol not reveal the presence of quantum
correlations, it does not mean quantum correlations are absent. The measurements are only
a lower bound. Any deviation in the time evolution of the dephased and the undephased
states reveals the presence of quantum correlations. Only a single measurement is required
in contrast to performing 3N operations for state tomography. In this respect, the protocol
is similar to constructing a particular witness for quantum correlations instead of measuring
the entire density matrix.

The experiment used one of the simplest possible representations for the environment, a
single harmonic oscillator. This raises an important question as to how the protocol would
perform with a larger environment - we will discuss an experiment aimed at answering this
question in the next Chapter. In addition, we will build on this proof-of-principle experiment
and discuss a direct application of the protocol for the purposes of detecting quantum phase
transitions.
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Chapter 6

Dephasing with Larger Environments

6.1 Long Trapped Ion Chains

The experiment described in Chapter 5 used the one-dimensional harmonic motion of the
ion in the trap to represent the environment E of the open quantum system S represented
by the electronic state of the ion. This environment is non-Markovian as there are clear
memory effects in the system’s time evolution. Here, we extend the experiment by con-
sidering a larger environment of multiple harmonic oscillators. The goal is to answer the
question of whether or not the protocol still reveals the presence of quantum correlations
for sufficiently large environments and to explore the connection with the system’s degree
of non-Markovianity [44, 45, 46]. In this Chapter, we present the first experimental steps
undertaken towards this goal.

The experiment incorporates the local detection protocol with aspects of the energy
transport in trapped ion chains presented in Chapter 4. To study transport of energy, we
prepared an out-of-equilibrium state by rapidly imparting momentum onto one of the ions
in the chain. Similarly, here we use a short sideband pulse of 729 nm to create quantum
correlations between the electronic state of the ion and its local motion in the trap. The
duration of the entangling pulse tSB has to be short enough such that the pulse’s Fourier
bandwidth encompasses all of the radial normal modes, see Figure 6.1. Since the local
motional mode can be decomposed in terms of the normal modes of the chain, we effectively
create quantum correlations between the electronic state and a larger environment containing
all of the participating radial normal modes of motion.

We then perform the dephasing operation and compare the time evolution of the dephased
and the undephased states under a unitary interaction U(t) for a time tmax. The unitary
U(t) is chosen to complete the underlying Ramsey experiment. The time evolution is shown
in Figure 6.2. If tmax ≤ tSB, then the unitary is simply the continuation of the fast sideband
pulse used to create the correlations. This is exactly the same as we performed in case of the
single ion. If the maximum unitary interaction time is longer than the pulse time, tmax > tSB,
then we let the system evolve freely before for a time tmax − tSB and then apply the second
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Figure 6.1: The spectra of the red radial motional modes for a five ion chain are shown for
various excitation times with the 729 nm laser. For short excitations, the Fourier bandwidth
is much larger than the mode splitting and the local mode of motion is excited. With
sufficiently long excitations and reduced laser intensity, we resolve the normal modes of ion
motion. The spectra are shifted at high laser intensities due to the AC Stark shift effect.

sideband pulse. In either case, the short duration of the sideband pulse interacts with the
local mode of ion motion.

The preliminary results of such an experiment conducted with a chain of five ions is
shown in Figure 6.3. All of the normal modes of ion motion were prepared in a thermal state
with Doppler cooling. We observe that the dephased and the undephased time evolutions
differ and, hence, the protocol is successful as detecting the present quantum correlations.
The data was collected at the same conditions as the energy transport experiment where the
energy supplied to the leftmost ion was transferred to the rightmost ion in t ∼ 70 µs. Here we
see that at that point in the time evolution, the dephased and the undephased curves match.
Our interpretation is that the electronic state of the leftmost ion is now correlated with the
local motion of the rightmost ion and quantum correlations can no longer be detected locally.

Similar to the energy transport results, the quantum correlations then come back to the
leftmost ion: the larger environment is still non-Markovian. Then the protocol once again is
able to detect the presence of quantum correlations. For longer time, the difference between
the dephased and the undephased time evolutions vanishes due to the limited motional
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Figure 6.2: Shown is the time evolution U(t) for two different maximum interaction times
tmax. Sideband pulses are depicted in red. For short time evolutions, the pulse begins
immediately after dephasing t = 0. For long evolutions, the pulse only starts after a waiting
period.

coherence time.
We are currently exploring the systematic effect of laser detuning of the radial sideband

pulses. The challenge is that at Doppler temperature, it is no longer possible to perform a
brute-force numerical simulation of the dynamics. If we need to consider 10 motional levels
for each of the 5 normal modes, then the density matrix representing of the environment has
dimension 105. Furthermore, similar to the energy transport experiment, the exact same
experimental procedure can be repeated with a much larger number of ions.

6.2 Local Signature of Quantum Phase Transitions

In this section, we demonstrate how the local detection protocol can be applied for detec-
tion of quantum correlations during a quantum phase transition. There is a wide body of
literature exploring the interplay between quantum entanglement and quantum phase tran-
sitions. While quantum phase transitions of quantum magnetism have already been realized
with trapped ions, [23, 24] there has been no measurements demonstrating the presence of
quantum correlations during the quantum phase transition. The advantage of the protocol
is that it requires operations only on one subsystem, for example only one spin of a quantum
magnet. This is particular pertinent as the experiments have been approaching system sizes
for which measuring the full density matrix is no longer feasible.

To demonstrate the use of the protocol, we considering the example of a ferromagnetic
quantum Ising model realized in [23]. Our study of quantum correlations between a single
site and the rest of the system during the quantum phase transition is particularly compelling
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Figure 6.3: Preliminary data applying the local detection protocol to a chain of trapped ions.
The leftmost ion is initially entangled with the local mode of motion with a fast sideband
excitation pulse. The evolution time consists of a waiting period followed about another
fast sideband excitation. The difference between the dephased and the undephased time
evolution proves the presence of quantum correlations.

because of a known correspondence between the behavior of entanglement and the critical
point in the transverse Ising model [47]. The Hamiltonian H is given by the sum of the Ising
coupling and the magnetic field terms:

H =
∑
i<j

−Jijσ(i)
x σ

(j)
x −B

∑
i

σ(i)
y , (6.1)

where σ
(i)
x and σ

(i)
y are Pauli spin operators applied to the ith spin and B is the strength of

the magnetic field along the y direction. We consider the approximate Ising coupling Jij [48]
where the coupling strength falls off with distance |i− j| as:

Jij ≈
J0

|i− j|α . (6.2)

The experimental quantum simulation begins by initializing all the spins to point along the y
direction. This is the ground state of the Hamiltonian H0 = −B∑i σ

(i)
y and an approximate
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ground state of H for very strong magnetic fields: B � J0. After the preparation step, the
magnetic field B is adiabatically ramped down to B = 0 such that the system remains in
the ground state of H during the ramp. While the prepared initial state is a product state
containing has no quantum correlations, the final state of the simulation is an entangled
state. More precisely, for B = 0 the ground state of H is a superposition of the states
| ↑↑ . . . ↑〉 and | ↓↓ . . . ↓〉 where | ↑〉 and | ↓〉 are the eigenstates of σx.

Let us consider the reduced density matrix of only one spin within the chain during the
course of the quantum simulation. It is initialized with the Bloch vector pointing along the
y direction and terminates as the maximally mixed state with no net magnetization along y.
The magnetization during the course of the phase transition is plotted in Figure 6.5. This
type of net magnetization measurement has been performed in the experiments confirming
that the system has gone through the phase transition. However, the net magnetization does
not reveal anything about the presence of quantum correlations during the evolution.

The method of local detection probes the emergence of the quantum correlations between
the one spin and the rest of the system during the ramp. We performed numerical simulations
using the QuTip framework [49] to confirm that the local detection method can be readily
applied to the given system. For the simulation, we used N = 5 spins and the coupling
coefficient α = 1.0. The simulations consist of preparing a correlated state by ramping
the magnetic field down to a particular value B, then comparing the time evolution of the
dephased and the unperturbed system while the magnetic field remains fixed at the chosen
value. The dephasing operation has to be performed in the σy basis, which, as described
in section 5.3.2, may be implemented with an AC-Stark shift but with additional unitary
rotations.

The results of the simulation for various dephasing point along the magnetic field ramp
are plotted in Figure 6.4. We see that for early dephasing times, B/J0 � 1, the dephased
and the undephased time evolutions match, demonstrating that quantum correlations are
either not present or do not play a significant role in the ensuing time evolution. For later
dephasing times, there is an appreciable difference between the two time evolutions, and it
seems to be largest close to the quantum critical point B/J0 = 1. The difference in time
evolutions of the dephased and the undephased states has a straightforward interpretation.
For a sufficiently slow ramp, the system will remain in the ground state over the course of
the ramp. With the magnetic field fixed, the evolution of the undephased state is trivial
as the system remains in the ground state of the Hamiltonian. The dephasing operation,
however, projects the ground state onto a superposition of the eigenstates. Therefore, the
single spin begins to oscillate at the corresponding eigenfrequencies.

To quantify the effect of quantum correlations on the dynamics, we plot the maximum
trace distance between the dephasing and the undephased time evolutions as a function of the
dephasing point, see Figure 6.5. The maximal trace distance peaks near the quantum critical
point. According to the protocol, the maximum trace distance is only the lowest bound on
the present quantum correlations. Interestingly here, we see that the peak attainable lowest
bound is indicative of the quantum critical point. Experimentally, it is not possible to let
the system evolve indefinitely to obtain the largest possible trace distance. But the results
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Figure 6.4: The time evolutions of the dephased and the undephased states are shown for
three dephasing points along the quantum phase transition: B/J0 = 5 (top), B/J0 = 0.5
(center), and B/J0 = 0.05 (bottom). The numerical simulation takes into account the finite
speed of the ramp: the magnetic field is lowered from the initial value of B/J0 = 50 to
B/J0 = 0.01 as a decaying exponential with the time constant of 5/J0.
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Figure 6.5: Shown in blue is the y component of the Bloch vector of the single spin as the
magnetic field is ramped down. For this simulation, we assume an infinitely slow ramp,
allowing us to simply compute the ground state of H for every value of B. The x and z
components have no preferred direction over the course of the simulation. Shown in red is
the maximal local trace distance between the subsequent dephased and the undephased time
evolutions when the dephasing operation is applied at the particular field B. The simulation
shows that there is a large deviation between the time evolutions, which we expect to be
experimentally detectable.
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should still be observable for reasonable decoherence timescales, as presented in [50]. For
small magnetic fields no quantum correlations are detected with this method even though
the spins are in a large superposition state.

While the method for detection of quantum correlations over the course of quantum
phase transition was presented in the context of quantum magnetism simulations, we expect
it to be broadly applicable to a variety of systems. For instance, we envision applying it
to the Jaynes-Cummings-Hubbard model realized with a system of two ions by Toyoda et
al. [51]. The protocol may serve as a conclusive experimental verification of a quantum phase
transition. The standard definition of a quantum phase transition is that it occurs at zero
temperature and is driven by quantum, rather than thermal fluctuations. Such a definition
is difficult to verify experimentally. The presented protocol introduces a new experimental
definition: for a phase transition to be quantum, the present quantum correlations must play
a role in the system’s time evolution.
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Chapter 7

Summary

In this Chapter we give a brief review of the presented material. The introductory Chapter
described the motivation for the conducted work. In Chapter 2, we reviewed the funda-
mentals of ion trapping and the ion-laser interactions, describing how time-varying electric
fields in a Paul trap confine the ions. We then focused on coherent interaction of the laser
addressing a narrow electronic transition and gave an overview of Doppler cooling.

In Chapter 3, we presented the experimental apparatus for trapping ions. We reviewed
the motivations for selecting a three-dimensional Paul trap for the experiments, and described
the design, assembly, and construction of the first-generation trap and the optical cavity. The
trap was used to conduct all of the experiments in this thesis, but the cavity was misaligned
after the final pumpdown and bakeout. We then presented our design modifications for the
next-generation trap and cavity, which are currently under construction. The new designs
built on our experience with the first trap and should correct the known shortcomings. The
Chapter also described the imaging system for collecting ion fluorescence using a CCD and
a PMT and the employed experimental procedures of frequency-resolved optical pumping
and auto-crystallization.

In the following Chapter on energy transport, we reported on conducted experiments
studying the dynamics of ion motion within long chains. We performed a Newton cradle-like
experiment by rapidly imparting momentum onto a single ion at the end of the chain with the
technique of pulsed excitation. After letting the system evolve for a variable delay time, we
measured the energy of the ions on the extreme ends of the chain. This allowed us to observe
the dynamics of the initial energy excitation as it propagated between the observed ions. The
results agreed with the normal-mode model of ion motion, demonstrating a good degree of
control over ion motion in long chains. The results represented the first experimental steps
towards realizing existing theoretical proposals considering ion chains as a model system of
coupled oscillators.

In Chapter 5, we presented the technique of detecting quantum correlations between
two quantum systems with only access to one of the two subsystems. We used a single
trapped ion to implement this technique of local detection. The ion’s energy level represented
the accessible system while the ion’s motion in the trap played the role of the inaccessible



CHAPTER 7. SUMMARY 70

environment. We described the implementation of the dephasing operation, which removes
the quantum correlations between the two quantum systems without disturbing either of the
systems. The protocol relied on detecting the difference in the time evolution of the accessible
system with and without the presence of quantum correlations. If the time evolution differed
with and without the dephasing operations, we concluded that quantum correlations must
have been present when the dephasing operation was applied. The protocol was shown
to successfully detect quantum correlations for both quasi-pure and thermal states of ion
motion.

The ideas of energy transport in long ion chains and the protocol for locally detecting
quantum correlations coalesced in Chapter 6. There, we described the first experiments
for detecting quantum correlations between the electronic level of a single ion and a larger
environment consisting of many radial normal modes of chain motion. The results were
relevant for the general study of the role of quantum correlations for dynamics of many-
body systems. Lastly, we focused on how the local detection protocol may be used for
detection of quantum phase transitions.
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[45] Ángel Rivas, Susana F. Huelga, and Martin B. Plenio. “Entanglement and Non-
Markovianity of Quantum Evolutions”. In: Phys. Rev. Lett. 105 (5 July 2010), p. 050403.
doi: 10.1103/PhysRevLett.105.050403.

[46] E.-M. Laine, J. Piilo, and H.-P. Breuer. “Witness for initial system-environment cor-
relations in open-system dynamics”. In: EPL 92.6 (2010), p. 60010.

[47] Tobias J. Osborne and Michael A. Nielsen. “Entanglement in a simple quantum phase
transition”. In: Phys. Rev. A 66 (3 Sept. 2002), p. 032110. doi: 10.1103/PhysRevA.
66.032110.

[48] R. Islam et al. “Emergence and Frustration of Magnetism with Variable-Range In-
teractions in a Quantum Simulator”. In: Science 340.6132 (2013), pp. 583–587. doi:
10.1126/science.1232296.

[49] J.R. Johansson, P.D. Nation, and Franco Nori. “QuTiP 2: A Python framework for
the dynamics of open quantum systems”. In: Computer Physics Communications 184.4
(2013), pp. 1234–1240. doi: 10.1016/j.cpc.2012.11.019.

[50] Manuel Gessner et al. Observing a Quantum Phase Transition by Measuring a Single
Spin. 2014. eprint: arXiv:1403.4066.

[51] Kenji Toyoda et al. “Experimental Realization of a Quantum Phase Transition of
Polaritonic Excitations”. In: Phys. Rev. Lett. 111 (16 Oct. 2013), p. 160501. doi:
10.1103/PhysRevLett.111.160501.

[52] Martin Sepiol. “Frequency stabilization of a 729 nm diode laser to an external high
finesse reference cavity”. MA thesis. ETH Zurich, 2012.

[53] G. Tommaseo et al. “The gJ-factor in the ground state of Ca+”. In: The European
Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 25.2 (2003),
pp. 113–121. doi: 10.1140/epjd/e2003-00096-6.

[54] M. Chwalla et al. “Absolute Frequency Measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2

Clock Transition”. In: Phys. Rev. Lett. 102 (2 Jan. 2009), p. 023002. doi: 10.1103/
PhysRevLett.102.023002.

[55] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum In-
formation (Cambridge Series on Information and the Natural Sciences). 1st ed. Cam-
bridge University Press, Jan. 1, 2004. isbn: 0521635039.

[56] Mark E. Tuckerman. Statistical Mechanics: Theory and Molecular Simulation (Oxford
Graduate Texts). Oxford University Press, USA, Apr. 19, 2010. isbn: 0198525265.

http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevA.66.032110
http://dx.doi.org/10.1103/PhysRevA.66.032110
http://dx.doi.org/10.1126/science.1232296
http://dx.doi.org/10.1016/j.cpc.2012.11.019
arXiv:1403.4066
http://dx.doi.org/10.1103/PhysRevLett.111.160501
http://dx.doi.org/10.1140/epjd/e2003-00096-6
http://dx.doi.org/10.1103/PhysRevLett.102.023002
http://dx.doi.org/10.1103/PhysRevLett.102.023002


BIBLIOGRAPHY 75

[57] Claude Cohen-Tannoudji, Jacques Dupont-Roc, and Gilbert Grynberg. Atom - Photon
Interactions: Basic Process and Appilcations. Wiley-VCH, 2008. isbn: 9783527617197.

[58] Ali H Nayfeh and Dean T Mook. Nonlinear Oscillations. Wiley, 2008.



76

Appendix A

Detailed Experimental Control

A.1 LabRAD Structure

The LabRAD manager is the centerpiece program in controlling the experiments. It keeps
track of and manages connections to all of the connected programs. The manager also
contains the Registry - a simple database that is used to store permanent information about
the control. Individual devices are controlled by LabRAD servers that may also perform
more abstract tasks. The Data Vault server, for example, is responsible for saving collected
experimental data to disk, while the Node server is able to launch all of the needed servers
as subprocesses. The servers are written with an asynchronous programming framework (e.g
twisted library in Python), allowing them to simultaneously respond to multiple connections.

In addition to servers, there are also clients. Clients come in two types: synchronous
clients are just scripts that issue a sequence of commands to the servers. Asynchronous
clients are used for GUI applications. Similar to scripts, they issue commands to the servers
when the user interacts with their interface, but are also able to receive signals from the
servers when an external update has been made. The signaling allows the GUIs to remain
up to date with the server’s information when the updates are issued externally.

The structure of all the servers used in our experiment is shown on Figure A.1. They
span three separate computers: Laser Room Windows machine controlling laser cavities and
the wavemeter, Imaging Windows machine communicating with the Andor CCD camera
and GPIB devices, and the Linux machine running the majority of the servers. The Laser
Room machine runs its own LabRAD Manager allowing access to other experiments in the
laboratory even when the Linux and the Imaging Machines are switched off. All of the
experiments access the machine using its static IP address on the network. The Laser Room
machine communicates with the Wavemeter (HighFinesse WS7 Super Precision) using the
API provided with the installation drivers. The multiplexer, switching the lasers measured
by the wavemeter, and the DAC, setting the voltages of the reference laser cavities, are
controlled by the corresponding servers via the serial interface managed with the Serial
Server.
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The Imaging Windows machine is responsible for all of the devices requiring the Windows
operating system: the Andor CCD Camera, and all of the GPIB devices. Specifically it runs
the Andor Server, which communicates to the Andor Luca camera via the Andor API as
well as the GPIB bus that interfaces with all of the GPIB devices on the experiment.

The LabRAD manager and the bulk of the servers run on the Linux machine. In terms
of hardware it uses the DAC and the Pulser servers to communicate with the corresponding
FPGAs via the Opal Kelly API. The Pulser server is used to control DDS and TTL channels
of the FPGA and to synthesize sequences of laser pulses, as described in the subsection A.1.4.
The ADC server controls the analog-to-digital converter using the Serial Server interface. The
servers for the controlled GPIB devices also run on the Linux machine. These communicate
to the devices through the GPIB Device Manager.

There is a number of servers that perform abstract tasks: Data Vault stores all of the
experimental data, Fitter allows to fit the collected data to predefined functions. The Normal
PMT Flow server collects the PMT data from the Pulser and directs it to Data Vault. Finally
the electrode diagonalization server compensates for the physical asymmetries in the trap
electrodes, and the crystallizer assists with keeping ion chains from melting. Drift Tracker
keeps track of the drifts of the high finesse laser cavity and the magnetic field, as described
in section A.1.3. The Parameter Vault and ScriptScanner servers make up the ScriptScanner
framework for scheduling, pausing, and stopping experiments, which will also be explained
later in section A.1.2. Every machine runs a Node Server which handles starting and stopping
all the other servers running on that computer.

In the following subsections, we provide a brief description of selected servers and clients
with the emphasis on new describing the new LabRAD developments.

A.1.1 Camera Server

The Camera Server interfaces with the Andor Luca CCD. This server is unique in several
respects: the communication is handled via the provided camera DLL loaded into memory
with the Python ctypes library. The server also provides its own GUI window for displaying
the collected images live. This is done to alleviate the burden of transmitting the collected
stream of images via TCP. The camera server also provides methods for to request single
and kinetic series of images, change triggering type, and specify the region of interest for
image readout. All of the image processing required to identify the ions is done in the script
requesting the images.

A.1.2 ScriptScanner Framework

Within our use of the LabRAD framework, the individual experiments are performed using
Python scripts. Early on, we simply launched the individual scripts from a console window,
however, this approach was limiting. First, there is no way of gracefully pausing and then
resuming an executing script. There is no way to accommodate scheduling: over the course
of complex measurement a particular calibration script may need to be execute every few
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Figure A.1: The structure of LabRAD servers making up the experimental control spanning
three computers. The servers are presented in green boxes, API protocols are in dark blue
while the physical hardware is in light blue and the LabRAD managers are in orange.

minutes. The calibration script would then need to pause the measurement, complete cali-
bration, and then resume the conducted measurement. Finally, each running script has to
look up a multitude of experimental parameters. These should be stored in a single place, so
that they are easily shared among multiple conducted experiments. In order to accommodate
all of these requirements, we have implemented the ScriptScanner Framework.

The ScriptScanner Framework consists of two servers: Parameter Vault which stores
the experimental parameters, and ScriptScanner which manages the launch and schedule
of experiment execution. The ScriptScanner allows the running scripts to be paused and
resumed. We illustrate their functionality by considering the frequently utilized Ramsey drift
tracker experiment. The theory behind the experiment is explained in sections B.5 and A.1.3,
so here we focus on the Python code. Below is the code for the top-level experiment:

from common . a b s t r a c t d e v i c e s . s c r i p t s c a n n e r . scan methods import experiment
from d r i f t t r a c k e r r a m s e y o n e l i n e import d r i f t t r a c k e r r a m s e y o n e l i n e
from l abrad . un i t s import WithUnit
from t r e e d i c t import TreeDict
import numpy as np

class d r i f t t r a c k e r r a m s e y ( experiment ) :

name = ’ DriftTrackerRamsey ’
d t r equ i r ed paramete r s = [

( ’ Dr i f tTracker ’ , ’ l i n e s e l e c t i o n 1 ’ ) ,
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( ’ Dr i f tTracker ’ , ’ l i n e s e l e c t i o n 2 ’ ) ,
( ’ DriftTrackerRamsey ’ , ’ l i n e 1 p i t i m e ’ ) ,
( ’ DriftTrackerRamsey ’ , ’ l i n e 1 a m p l i t u d e ’ ) ,
( ’ DriftTrackerRamsey ’ , ’ l i n e 2 p i t i m e ’ ) ,
( ’ DriftTrackerRamsey ’ , ’ l i n e 2 a m p l i t u d e ’ ) ,
( ’ DriftTrackerRamsey ’ , ’ e r r o r s e n s i t i v i t y ’ ) ,
]

@classmethod
def a l l r e q u i r e d p a r a m e t e r s ( c l s ) :

parameters = s e t ( c l s . d t r equ i r ed paramete r s )
parameters = parameters . union ( s e t ( d r i f t t r a c k e r r a m s e y o n e l i n e .

a l l r e q u i r e d p a r a m e t e r s ( ) ) )
parameters = l i s t ( parameters )
#removing parameters we ’ l l be overwr i t ing , and they do not need to be loaded
parameters . remove ( ( ’ DriftTrackerRamsey ’ , ’ l i n e s e l e c t i o n ’ ) )
parameters . remove ( ( ’ DriftTrackerRamsey ’ , ’ p i t ime ’ ) )
parameters . remove ( ( ’ DriftTrackerRamsey ’ , ’ amplitude ’ ) )
parameters . remove ( ( ’ DriftTrackerRamsey ’ , ’ detuning ’ ) )
return parameters

def i n i t i a l i z e ( s e l f , cxn , context , ident ) :
s e l f . i dent = ident
s e l f . d r i f t t r a c k e r = cxn . s d t r a c k e r
s e l f . ramsey dt = s e l f . make experiment ( d r i f t t r a c k e r r a m s e y o n e l i n e )
s e l f . ramsey dt . i n i t i a l i z e ( cxn , context , ident )

def run ( s e l f , cxn , context ) :
dt = s e l f . parameters . Dr i f tTracker
ramsey dt = s e l f . parameters . DriftTrackerRamsey
i f dt . l i n e s e l e c t i o n 1 == dt . l i n e s e l e c t i o n 2 :

raise Exception ( ”The two D r i f t Tracking l i n e s can not be the same” )
r e p l a c e 1 = TreeDict . f romdict ({

’ DriftTrackerRamsey . l i n e s e l e c t i o n ’ : dt .
l i n e s e l e c t i o n 1 ,

’ DriftTrackerRamsey . p i t ime ’ : ramsey dt . l i n e 1 p i t i m e
,

’ DriftTrackerRamsey . amplitude ’ : ramsey dt .
l i n e 1 amp l i tude ,

’ DriftTrackerRamsey . detuning ’ : WithUnit (0 , ’Hz ’ ) ,
})

r e p l a c e 2 = TreeDict . f romdict ({
’ DriftTrackerRamsey . l i n e s e l e c t i o n ’ : dt .

l i n e s e l e c t i o n 2 ,
’ DriftTrackerRamsey . p i t ime ’ : ramsey dt . l i n e 2 p i t i m e

,
’ DriftTrackerRamsey . amplitude ’ : ramsey dt .

l i n e 2 amp l i tude ,
’ DriftTrackerRamsey . detuning ’ : WithUnit (0 , ’Hz ’ )
})

r ep l a c e 1 , r e p l a c e 2 = np . random . permutation ( [ r ep l a c e 1 , r e p l a c e 2 ] )
s e l f . ramsey dt . s e t paramete r s ( r e p l a c e 1 )
s e l f . ramsey dt . s e t p r o g r e s s l i m i t s (0 , 50 . 0 )
f requency 1 , e x c i t a t i o n = s e l f . ramsey dt . run ( cxn , context )
e r r o r s e n s i t i v i t y = ramsey dt . e r r o r s e n s i t i v i t y
i f not 0 .5 − e r r o r s e n s i t i v i t y <= e x c i t a t i o n <= 0.5 + e r r o r s e n s i t i v i t y :

raise Exception ( ” I n c o r r e c t Exc i ta t i on {}” . format ( r e p l a c e 1 . DriftTrackerRamsey .
l i n e s e l e c t i o n ) )

s e l f . ramsey dt . s e t paramete r s ( r e p l a c e 2 )
s e l f . ramsey dt . s e t p r o g r e s s l i m i t s ( 5 0 . 0 , 100 . 0 )
f requency 2 , e x c i t a t i o n = s e l f . ramsey dt . run ( cxn , context )
i f not 0 .5 − e r r o r s e n s i t i v i t y <= e x c i t a t i o n <= 0.5 + e r r o r s e n s i t i v i t y :
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raise Exception ( ” I n c o r r e c t Exc i ta t i on {}” . format ( r e p l a c e 2 . DriftTrackerRamsey .
l i n e s e l e c t i o n ) )

s e l f . submi t cente r s ( r ep l a c e 1 , f requency 1 , r ep l a c e 2 , f r equency 2 )

def submi t cente r s ( s e l f , r ep l a c e 1 , center1 , r ep l a c e 2 , c ente r2 ) :
i f cente r1 i s not None and cente r2 i s not None :

submiss ion = [
( r e p l a c e 1 . DriftTrackerRamsey . l i n e s e l e c t i o n , c ente r1 ) ,
( r e p l a c e 2 . DriftTrackerRamsey . l i n e s e l e c t i o n , c ente r2 ) ,
]

s e l f . d r i f t t r a c k e r . set measurements ( submiss ion )

def f i n a l i z e ( s e l f , cxn , context ) :
s e l f . ramsey dt . f i n a l i z e ( cxn , context )

i f name == ’ ma in ’ :
import l abrad
cxn = labrad . connect ( )
scanner = cxn . s c r i p t s c a n n e r
exprt = d r i f t t r a c k e r r a m s e y ( cxn = cxn )
ident = scanner . r e g i s t e r e x t e r n a l l a u n c h ( exprt . name)
exprt . execute ( ident )

The first thing to observe is that the drift tracker ramsey class inherits from the
experiment class, which is imported from the ScriptScanner scan methods file. While
inhering from the parent class, we need to subclass several methods needed by all experi-
ments: def all required parameters, def initialize, def run and def finalize. The def
all required parameters method returns a list of all the parameters required by the ex-
periment. Here, this consists of the constants specified in dt required parameters list in
addition to all of the required methods needed by the drift track ramsey oneline subex-
periment. Notice that some of the subexperiment’s required parameters are excluded from
the list as these will be explicitly overwritten in the course of executing the experiment. The
list of parameters returned by def all required parameters will be automatically looked
up from the ParameterVault server when the experiment is executed. Once looked up, these
parameters will be available in the self.parameters tree dictionary.

The execution of the experiment can be performed in two ways. It is possibly to run the
Python code directly with the code below if name == ´ main ’:. In this case, the
experiment will be executed in the local shell but the running experiment will be registered
with the ScriptScanner server. While this method of launching experiments is better for
debugging the code, it does not allow ScriptScanner to start the experiment on its own
(while scheduling it to run every few minutes, for instance). Thus, the preferred way to
run the experiment is to import it into the list of ScriptScanner available experiments. The
imported experiment will execute in a separate thread of the ScriptScanner server and could
be launched through the ScriptScanner GUI or by accessing one of the ScriptScanner settings.
However the experiment is launched, its execution will look up the required parameters, and
then call the def initialize, def run, and def finalize methods in that order.

The idea of this experiment is that we execute the subexperiment drift track ramsey oneline
twice, once for each laser transition. Then the results are submitted to the Drift Tracker
server detailed in section A.1.3. To replace the parameters, we use the self.ramsey dt.set parameters
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method with the argument of a tree dictionary containing the replacement parameters. Each
time we also set the progress limits, so that they are correctly reported to the ScriptScanner
server by the subexperiment. The source code is below:
from common . a b s t r a c t d e v i c e s . s c r i p t s c a n n e r . scan methods import experiment
from l a t t i c e . s c r i p t s . s c r i p t L i b r a r y . common methods 729 import common methods 729 as cm
from e x c i t a t i o n s import exc i t a t i on ramsey
from t r e e d i c t import TreeDict
from l abrad . un i t s import WithUnit
from numpy import arc s in , p i
import time

class d r i f t t r a c k e r r a m s e y o n e l i n e ( experiment ) :

name = ’ DriftTrackerRamseyOneLine ’
d t r equ i r ed paramete r s = [

( ’ DriftTrackerRamsey ’ , ’ l i n e s e l e c t i o n ’ ) ,
( ’ DriftTrackerRamsey ’ , ’ gap time ’ ) ,
( ’ DriftTrackerRamsey ’ , ’ p i t ime ’ ) ,
( ’ DriftTrackerRamsey ’ , ’ amplitude ’ ) ,
( ’ DriftTrackerRamsey ’ , ’ detuning ’ ) ,
( ’ DriftTrackerRamsey ’ , ’ readouts ’ ) ,
( ’ DriftTrackerRamsey ’ , ’ opt ica l pumping enable DT ’ ) ,

( ’ StateReadout ’ , ’ camera pr imary ion ’ ) ,
( ’ StateReadout ’ , ’ u s e camera fo r r eadout ’ ) ,
]

@classmethod
def a l l r e q u i r e d p a r a m e t e r s ( c l s ) :

parameters = s e t ( c l s . d t r equ i r ed paramete r s )
parameters = parameters . union ( s e t ( exc i t a t i on ramsey . a l l r e q u i r e d p a r a m e t e r s ( ) ) )
parameters = l i s t ( parameters )
#removing parameters we ’ l l be overwr i t ing , and they do not need to be loaded
parameters . remove ( ( ’Ramsey ’ , ’ ramsey time ’ ) )
parameters . remove ( ( ’Ramsey ’ , ’ s e cond pu l s e phase ’ ) )
parameters . remove ( ( ’ Exc i t a t i on 729 ’ , ’ r a b i e x c i t a t i o n a m p l i t u d e ’ ) )
parameters . remove ( ( ’ Exc i t a t i on 729 ’ , ’ r a b i e x c i t a t i o n f r e q u e n c y ’ ) )
parameters . remove ( ( ’ Tomography ’ , ’ i t e r a t i o n ’ ) )
parameters . remove ( ( ’ Tomography ’ , ’ r a b i p i t i m e ’ ) )
parameters . remove ( ( ’ Tomography ’ , ’ tomography exc i tat ion ampl i tude ’ ) )
parameters . remove ( ( ’ Tomography ’ , ’ t omography exc i ta t i on f r equency ’ ) )
parameters . remove ( ( ’ TrapFrequencies ’ , ’ a x i a l f r e q u e n c y ’ ) )
parameters . remove ( ( ’ TrapFrequencies ’ , ’ r a d i a l f r e q u e n c y 1 ’ ) ) ,
parameters . remove ( ( ’ TrapFrequencies ’ , ’ r a d i a l f r e q u e n c y 2 ’ ) ) ,
parameters . remove ( ( ’ TrapFrequencies ’ , ’ r f d r i v e f r e q u e n c y ’ ) ) ,
#w i l l be d i s a b l i n g s ideband coo l i n g au tomat i ca l l y
parameters . remove ( ( ’ SidebandCool ing ’ , ’ s i d e b a n d c o o l i n g e n a b l e ’ ) ) ,
parameters . remove ( ( ’ SidebandCool ing ’ , ’ f r e q u e n c y s e l e c t i o n ’ ) ) ,
parameters . remove ( ( ’ SidebandCool ing ’ , ’ manual f requency 729 ’ ) ) ,
parameters . remove ( ( ’ SidebandCool ing ’ , ’ l i n e s e l e c t i o n ’ ) ) ,
parameters . remove ( ( ’ SidebandCool ing ’ , ’ s i d e b a n d s e l e c t i o n ’ ) ) ,
parameters . remove ( ( ’ SidebandCool ing ’ , ’ s i d e b a n d c o o l i n g t y p e ’ ) ) ,
parameters . remove ( ( ’ SidebandCool ing ’ , ’ s i d e b a n d c o o l i n g c y c l e s ’ ) ) ,
parameters . remove ( ( ’ SidebandCool ing ’ , ’

s i d e b a n d c o o l i n g d u r a t i o n 7 2 9 i n c r e m e n t p e r c y c l e ’ ) ) ,
parameters . remove ( ( ’ SidebandCool ing ’ , ’ s i d e b a n d c o o l i n g f r e q u e n c y 8 5 4 ’ ) ) ,
parameters . remove ( ( ’ SidebandCool ing ’ , ’ s i d eband coo l i ng ampl i tude 854 ’ ) ) ,
parameters . remove ( ( ’ SidebandCool ing ’ , ’ s i d e b a n d c o o l i n g f r e q u e n c y 8 6 6 ’ ) ) ,
parameters . remove ( ( ’ SidebandCool ing ’ , ’ s i d eband coo l i ng ampl i tude 866 ’ ) ) ,
parameters . remove ( ( ’ SidebandCool ing ’ , ’ s i d eband coo l i ng ampl i tude 729 ’ ) ) ,
parameters . remove ( ( ’ SidebandCool ing ’ , ’ s i d eband coo l i ng op t i c a l pump ing dura t i on ’ ) ) ,
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parameters . remove ( ( ’ SidebandCool ingContinuous ’ , ’ s i d e b a n d c o o l i n g c o n t i n u o u s d u r a t i o n
’ ) ) ,

parameters . remove ( ( ’ SidebandCool ingPulsed ’ , ’ s i d e b a n d c o o l i n g p u l s e d d u r a t i o n 7 2 9 ’ ) ) ,
parameters . remove ( ( ’ SidebandCool ingPulsed ’ , ’ s i d e b a n d c o o l i n g p u l s e d c y c l e s ’ ) ) ,
parameters . remove ( ( ’ SidebandCool ingPulsed ’ , ’ s i d eband coo l ing pu l s ed dura t i on repumps

’ ) ) ,
parameters . remove ( ( ’ SidebandCool ingPulsed ’ , ’

s i d e b a n d c o o l i n g p u l s e d d u r a t i o n a d d i t i o n a l 8 6 6 ’ ) ) ,
parameters . remove ( ( ’ SidebandCool ingPulsed ’ , ’

s i d e b a n d c o o l i n g p u l s e d d u r a t i o n b e t w e e n p u l s e s ’ ) ) ,
#w i l l be enab le o p t i c a l pumping au tomat i ca l l y
parameters . remove ( ( ’ OpticalPumping ’ , ’ opt i ca l pumping enab l e ’ ) )
return parameters

def i n i t i a l i z e ( s e l f , cxn , context , ident ) :
s e l f . i dent = ident
s e l f . d r i f t t r a c k e r = cxn . s d t r a c k e r
s e l f . e x c i t a t i o n = s e l f . make experiment ( exc i t a t i on ramsey )
s e l f . e x c i t a t i o n . i n i t i a l i z e ( cxn , context , ident )
s e l f . phases = [ WithUnit ( 9 0 . 0 , ’ deg ’ ) , WithUnit (−90.0 , ’ deg ’ ) ]
s e l f . dv = cxn . data vau l t

def s e tup da ta vau l t ( s e l f ) :
l ine name = s e l f . parameters . DriftTrackerRamsey . l i n e s e l e c t i o n
#nav iga te to the d i r e c t o r y
l o c a l t i m e = time . l o c a l t i m e ( )
dirappend = [ time . s t r f t i m e ( ”%Y%b%d” , l o c a l t i m e ) ]
d i r e c t o r y = [ ’ ’ , ’ Experiments ’ ]
d i r e c t o r y . extend ( [ s e l f . name ] )
d i r e c t o r y . extend ( dirappend )
s e l f . dv . cd ( d i r e c t o r y , True )
#try opening the e x i s t i n g da ta s e t
datasetname = ’ RameyDriftTrack {} ’ . format ( l ine name )
d a t a s e t s i n f o l d e r = s e l f . dv . d i r ( ) [ 1 ]
names = sor t ed ( [ name for name in d a t a s e t s i n f o l d e r i f datasetname in name ] )
i f names :

#data se t wi th t ha t name e x i s t
s e l f . dv . open appendable ( names [ 0 ] )

else :
#data se t doesn ’ t a l ready e x i s t
s e l f . dv . new( datasetname , [ ( ’Time ’ , ’ Sec ’ ) ] , [ ( ’ Exc i t a t i on ’ , ’ Average ’ , ’ percent ’ ) , ( ’

Exc i t a t i on ’ , ’ Deviat ion ’ , ’ percent ’ ) ] )
window name = [ ’Ramey D r i f t Track {0} ’ . format ( s e l f . parameters . DriftTrackerRamsey

. l i n e s e l e c t i o n ) ]
s e l f . dv . add parameter ( ’Window ’ , window name )
s e l f . dv . add parameter ( ’ p l o tL ive ’ , True )

def run ( s e l f , cxn , context ) :
s e l f . s e tup da ta vau l t ( )
dt = s e l f . parameters . DriftTrackerRamsey
e x c i t a t i o n s = [ ]
f requency = cm. f r e q u e n c y f r o m l i n e s e l e c t i o n ( ’ auto ’ , None , dt . l i n e s e l e c t i o n , s e l f .

d r i f t t r a c k e r )
f requency = frequency + dt . detuning
for i t e r , phase in enumerate ( s e l f . phases ) :

r e p l a c e = TreeDict . f romdict ({
’Ramsey . f i r s t p u l s e d u r a t i o n ’ : dt . p i t ime / 2 . 0 ,
’Ramsey . s e cond pu l s e du ra t i on ’ : dt . p i t ime / 2 . 0 ,
’Ramsey . ramsey time ’ : dt . gap time ,
’Ramsey . s e cond pu l s e phase ’ : phase ,
’ Exc i t a t i on 729 . r a b i e x c i t a t i o n a m p l i t u d e ’ : dt .

amplitude ,
’ Exc i t a t i on 729 . r a b i e x c i t a t i o n f r e q u e n c y ’ :
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f requency ,
’ Tomography . i t e r a t i o n ’ : 0 . 0 ,
’ StateReadout . repeat each measurement ’ : dt .

readouts ,
’ SidebandCool ing . s i d e b a n d c o o l i n g e n a b l e ’ : False ,
’ OpticalPumping . opt i ca l pumping enab le ’ : dt .

optical pumping enable DT ,
})

s e l f . e x c i t a t i o n . s e t paramete r s ( r e p l a c e )
s e l f . update progre s s ( i t e r )
i f not s e l f . parameters . StateReadout . u s e camera fo r r eadout :

#using PMT
e x c i t a t i o n a r r a y , readout = s e l f . e x c i t a t i o n . run ( cxn , context )
e x c i t a t i o n = e x c i t a t i o n a r r a y [ 0 ]

else :
pr imary ion = i n t ( s e l f . parameters . StateReadout . camera pr imary ion )
e x c i t a t i o n a r r a y , readout = s e l f . e x c i t a t i o n . run ( cxn , context )
e x c i t a t i o n = e x c i t a t i o n a r r a y [ pr imary ion ]

e x c i t a t i o n s . append ( e x c i t a t i o n )
print e x c i t a t i o n s
detuning , a v e r a g e e x c i t a t i o n = s e l f . c a l c u l a t e d e t u n i n g ( e x c i t a t i o n s )
c o r r e c t e d f r e q u e n c y = frequency + detuning

# pr in t cor rec t ed f r equency , a v e r a g e e x c i t a t i on
return co r r e c t ed f r equency , a v e r a g e e x c i t a t i o n

def c a l c u l a t e d e t u n i n g ( s e l f , e x c i t a t i o n s ) :
dt = s e l f . parameters . DriftTrackerRamsey
i f not dt . opt ica l pumping enable DT :

#i f we are not doing o p t i c a l pumping during d r i f t t rack ing , then need to doub le
the measured e x c i t a t i o n s

e x c i t a t i o n s [ 0 ] = e x c i t a t i o n s [ 0 ] ∗ 2 . 0
e x c i t a t i o n s [ 1 ] = e x c i t a t i o n s [ 1 ] ∗ 2 . 0

average = ( e x c i t a t i o n s [ 0 ] + e x c i t a t i o n s [ 1 ] ) / 2 .0
dev i a t i on = ( e x c i t a t i o n s [ 0 ] − e x c i t a t i o n s [ 1 ] )
detuning = a r c s i n ( dev i a t i on ) / ( 2 . 0 ∗ pi ∗ dt . gap time [ ’ s ’ ] )
detuning = WithUnit ( detuning , ’Hz ’ )
s e l f . dv . add ( [ time . time ( ) , average , d ev i a t i on ] )
return detuning , average

def update progre s s ( s e l f , i t e r a t i o n ) :
p rog r e s s = s e l f . min progres s + ( s e l f . max progress − s e l f . min progres s ) ∗ f l o a t (

i t e r a t i o n + 1 . 0 ) / l en ( s e l f . phases )
s e l f . s c . s c r i p t s e t p r o g r e s s ( s e l f . ident , p rog r e s s )

def f i n a l i z e ( s e l f , cxn , context ) :
s e l f . e x c i t a t i o n . f i n a l i z e ( cxn , context )

i f name == ’ ma in ’ :
import l abrad
cxn = labrad . connect ( )
scanner = cxn . s c r i p t s c a n n e r
exprt = d r i f t t r a c k e r r a m s e y o n e l i n e ( cxn = cxn )
ident = scanner . r e g i s t e r e x t e r n a l l a u n c h ( exprt . name)
exprt . execute ( ident )

Again we see that the subexperiment inherits from the same experiment class. It can
be directly executed just like the top level experiment. In this case, the measured spectral
line is looked up directly from the ParameterVault and not provided by the top level ex-
periment. When drift track ramsey oneline runs, it will execute another subexperiment
called excitation ramsey with two different phases of the second ramsey pulse, see B.5.
The subexperiment excitation ramsey will return the probability of the ion being in the
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excited state after repeating the Ramsey pulse sequence the number of times specified in
StateReadout collection of the ParameterVault. Then these excitations will be used to cal-
culate the detuning from the line. The update progress method reports the completion
percentage to the ScriptScanner so that the user is aware of the measurement progress.

The subexperiment is short and so it does not implement the ability to pause or stop: the
execution will always continue until completion. If this were needed, we would use the def
pause or stop method implemented by the experiment class. When this method is called,
and returns True then the ScriptScanner requires the experiment to stop execution. The
response of False means continue execution. Pausing is accomplished by the ScriptScanner
delaying to answer the query until the experiment is unpaused. Whenever the experiment is
paused, stopped, resumed, or finished, it will update the ScriptScanner of the latest status.

For completeness, we include the code for the excitation ramsey experiment, which
executes the base excitation experiment measuring a single excitation percentage of the
ramsey pulse sequence. The base excitation allows to perform state readout with either
CCD or the PMT. For a tutorial on pulse sequence writing, see section A.1.4

from b a s e e x c i t a t i o n import b a s e e x c i t a t i o n

class exc i t a t i on ramsey ( b a s e e x c i t a t i o n ) :
from l a t t i c e . s c r i p t s . PulseSequences . ramsey import ramsey
name = ’ ExcitationRamsey ’
pu l s e s equence = ramsey

from common . a b s t r a c t d e v i c e s . s c r i p t s c a n n e r . scan methods import experiment
from l a t t i c e . s c r i p t s . s c r i p t L i b r a r y . common methods 729 import common methods 729 as cm
from l a t t i c e . s c r i p t s . exper iments . Camera . i o n s t a t e d e t e c t o r import i o n s t a t e d e t e c t o r
from l abrad . un i t s import WithUnit
import numpy
import time

class b a s e e x c i t a t i o n ( experiment ) :
name = ’ ’
e x c i t a t i o n r e q u i r e d p a r a m e t e r s = [

( ’ OpticalPumping ’ , ’ f r e q u e n c y s e l e c t i o n ’ ) ,
( ’ OpticalPumping ’ , ’ manual f requency 729 ’ ) ,
( ’ OpticalPumping ’ , ’ l i n e s e l e c t i o n ’ ) ,

( ’ OpticalPumpingAux ’ , ’ a u x o p l i n e s e l e c t i o n ’ ) ,
( ’ OpticalPumpingAux ’ , ’ aux op enable ’ ) ,

( ’ SidebandCool ing ’ , ’ f r e q u e n c y s e l e c t i o n ’ ) ,
( ’ SidebandCool ing ’ , ’ manual f requency 729 ’ ) ,
( ’ SidebandCool ing ’ , ’ l i n e s e l e c t i o n ’ ) ,
( ’ SidebandCool ing ’ , ’ s i d e b a n d s e l e c t i o n ’ ) ,
( ’ TrapFrequencies ’ , ’ a x i a l f r e q u e n c y ’ ) ,
( ’ TrapFrequencies ’ , ’ r a d i a l f r e q u e n c y 1 ’ ) ,
( ’ TrapFrequencies ’ , ’ r a d i a l f r e q u e n c y 2 ’ ) ,
( ’ TrapFrequencies ’ , ’ r f d r i v e f r e q u e n c y ’ ) ,

( ’ StateReadout ’ , ’ repeat each measurement ’ ) ,
( ’ StateReadout ’ , ’ s t a t e r e a d o u t t h r e s h o l d ’ ) ,

( ’ StateReadout ’ , ’ u s e camera fo r r eadout ’ ) ,
( ’ StateReadout ’ , ’ s t a t e r e a d o u t d u r a t i o n ’ ) ,

( ’ IonsOnCamera ’ , ’ ion number ’ ) ,
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( ’ IonsOnCamera ’ , ’ v e r t i c a l m i n ’ ) ,
( ’ IonsOnCamera ’ , ’ v e r t i ca l max ’ ) ,
( ’ IonsOnCamera ’ , ’ v e r t i c a l b i n ’ ) ,
( ’ IonsOnCamera ’ , ’ ho r i zonta l m in ’ ) ,
( ’ IonsOnCamera ’ , ’ hor izonta l max ’ ) ,
( ’ IonsOnCamera ’ , ’ h o r i z o n t a l b i n ’ ) ,

( ’ IonsOnCamera ’ , ’ f i t a m p l i t u d e ’ ) ,
( ’ IonsOnCamera ’ , ’ f i t b a c k g r o u n d l e v e l ’ ) ,
( ’ IonsOnCamera ’ , ’ f i t c e n t e r h o r i z o n t a l ’ ) ,
( ’ IonsOnCamera ’ , ’ f i t c e n t e r v e r t i c a l ’ ) ,
( ’ IonsOnCamera ’ , ’ f i t r o t a t i o n a n g l e ’ ) ,
( ’ IonsOnCamera ’ , ’ f i t s i g m a ’ ) ,
( ’ IonsOnCamera ’ , ’ f i t s p a c i n g ’ ) ,

]
pu l s e s equence = None

@classmethod
def a l l r e q u i r e d p a r a m e t e r s ( c l s ) :

params = s e t ( c l s . e x c i t a t i o n r e q u i r e d p a r a m e t e r s )
params = params . union ( s e t ( c l s . pu l s e s equence . a l l r e q u i r e d p a r a m e t e r s ( ) ) )
params = l i s t ( params )
params . remove ( ( ’ OpticalPumping ’ , ’ opt i ca l pumping f r equency 729 ’ ) )
params . remove ( ( ’ SidebandCool ing ’ , ’ s i d e b a n d c o o l i n g f r e q u e n c y 7 2 9 ’ ) )
params . remove ( ( ’ OpticalPumpingAux ’ , ’ a u x o p t i c a l f r e q u e n c y 7 2 9 ’ ) )
return params

def i n i t i a l i z e ( s e l f , cxn , context , ident ) :
s e l f . p u l s e r = cxn . p u l s e r
s e l f . d r i f t t r a c k e r = cxn . s d t r a c k e r
s e l f . dv = cxn . data vau l t
s e l f . t o t a l r e a d o u t s = [ ]
s e l f . r e adout save cont ex t = cxn . context ( )
s e l f . h i s tog ram save contex t = cxn . context ( )
s e l f . r e a d o u t s a v e i t e r a t i o n = 0
s e l f . s e tup sequence parameter s ( )
s e l f . s e t u p i n i t i a l s w i t c h e s ( )
s e l f . s e tup da ta vau l t ( )
s e l f . use camera = s e l f . parameters . StateReadout . u s e camera fo r r eadout
i f s e l f . use camera :

s e l f . i n i t i a l i z e c a m e r a ( cxn )

def i n i t i a l i z e c a m e r a ( s e l f , cxn ) :
s e l f . t o t a l c a m e r a c o n f i d e n c e s = [ ]
p = s e l f . parameters . IonsOnCamera
from l m f i t import Parameters as lmf i t Paramete r s
s e l f . camera = cxn . andor s e rve r
s e l f . f i t t e r = i o n s t a t e d e t e c t o r ( i n t (p . ion number ) )
s e l f . c a m e r a i n i t i a l l y l i v e d i s p l a y = s e l f . camera . i s l i v e d i s p l a y r u n n i n g ( )
s e l f . camera . a b o r t a c q u i s i t i o n ( )
s e l f . i n i t i a l e x p o s u r e = s e l f . camera . g e t exposure t ime ( )
exposure = s e l f . parameters . StateReadout . s t a t e r e a d o u t d u r a t i o n
s e l f . camera . s e t ex po s u r e t i me ( exposure )
s e l f . i n i t i a l r e g i o n = s e l f . camera . g e t image r eg i on ( )
s e l f . image reg ion = [

i n t (p . h o r i z o n t a l b i n ) ,
i n t (p . v e r t i c a l b i n ) ,
i n t (p . ho r i zonta l m in ) ,
i n t (p . hor izonta l max ) ,
i n t (p . v e r t i c a l m i n ) ,
i n t (p . ve r t i ca l max ) ,
]

s e l f . f i t p a r a m e t e r s = lmf i t Paramete r s ( )
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s e l f . f i t p a r a m e t e r s . add ( ’ ion number ’ , va lue = i n t (p . ion number ) )
s e l f . f i t p a r a m e t e r s . add ( ’ background l eve l ’ , va lue = p . f i t b a c k g r o u n d l e v e l )
s e l f . f i t p a r a m e t e r s . add ( ’ amplitude ’ , va lue = p . f i t a m p l i t u d e )
s e l f . f i t p a r a m e t e r s . add ( ’ r o t a t i o n a n g l e ’ , p . f i t r o t a t i o n a n g l e )
s e l f . f i t p a r a m e t e r s . add ( ’ c en t e r x ’ , va lue = p . f i t c e n t e r h o r i z o n t a l )
s e l f . f i t p a r a m e t e r s . add ( ’ c en t e r y ’ , va lue = p . f i t c e n t e r v e r t i c a l )
s e l f . f i t p a r a m e t e r s . add ( ’ spac ing ’ , va lue = p . f i t s p a c i n g )
s e l f . f i t p a r a m e t e r s . add ( ’ sigma ’ , va lue = p . f i t s i g m a )
x a x i s = numpy . arange ( s e l f . image reg ion [ 2 ] , s e l f . image reg ion [ 3 ] + 1 , s e l f .

image reg ion [ 0 ] )
y a x i s = numpy . arange ( s e l f . image reg ion [ 4 ] , s e l f . image reg ion [ 5 ] + 1 , s e l f .

image reg ion [ 1 ] )
xx , yy = numpy . meshgrid ( x ax i s , y a x i s )
s e l f . f i t t e r . s e t f i t t e d p a r a m e t e r s ( s e l f . f i t p a r am e t e r s , xx , yy )
s e l f . camera . s e t i m a g e r e g i o n (∗ s e l f . image reg ion )
s e l f . camera . s e t a c q u i s i t i o n m o d e ( ’ K ine t i c s ’ )
s e l f . i n i t i a l t r i g g e r m o d e = s e l f . camera . g e t t r i gg e r mode ( )
s e l f . camera . s e t t r i g g e r m o d e ( ’ External ’ )

def s e tup da ta vau l t ( s e l f ) :
l o c a l t i m e = time . l o c a l t i m e ( )
s e l f . datasetNameAppend = time . s t r f t i m e ( ”%Y%b%d %H%M %S” , l o c a l t i m e )
dirappend = [ time . s t r f t i m e ( ”%Y%b%d” , l o c a l t i m e ) , time . s t r f t i m e ( ”%H%M %S” , l o c a l t i m e )

]
s e l f . s a v e d i r e c t o r y = [ ’ ’ , ’ Experiments ’ ]
s e l f . s a v e d i r e c t o r y . extend ( [ s e l f . name ] )
s e l f . s a v e d i r e c t o r y . extend ( dirappend )
s e l f . dv . cd ( s e l f . s a v e d i r e c t o r y , True , context = s e l f . r e adout save cont ex t )
s e l f . dv . new( ’ Readout {} ’ . format ( s e l f . datasetNameAppend ) , [ ( ’ I t e r a t i o n ’ , ’Arb ’ ) ] , [ ( ’

Readout Counts ’ , ’Arb ’ , ’Arb ’ ) ] , context = s e l f . r e adout save cont ex t )

def s e tup sequence parameter s ( s e l f ) :
op = s e l f . parameters . OpticalPumping
opt i ca l pumping f r equency = cm. f r e q u e n c y f r o m l i n e s e l e c t i o n ( op . f r e q u e n c y s e l e c t i o n ,

op . manual frequency 729 , op . l i n e s e l e c t i o n , s e l f . d r i f t t r a c k e r , op .
opt i ca l pumping enab l e )

s e l f . parameters [ ’ OpticalPumping . opt i ca l pumping f r equency 729 ’ ] =
opt i ca l pumping f r equency

aux = s e l f . parameters . OpticalPumpingAux
aux opt i ca l pumping f r equency = cm. f r e q u e n c y f r o m l i n e s e l e c t i o n ( ’ auto ’ , WithUnit (0 ,

’MHz ’ ) , aux . a u x o p l i n e s e l e c t i o n , s e l f . d r i f t t r a c k e r , aux . aux op enable )
s e l f . parameters [ ’ OpticalPumpingAux . a u x o p t i c a l f r e q u e n c y 7 2 9 ’ ] =

aux opt i ca l pumping f requency
sc = s e l f . parameters . SidebandCool ing
s i d e b a n d c o o l i n g f r e q u e n c y = cm. f r e q u e n c y f r o m l i n e s e l e c t i o n ( sc . f r e q u e n c y s e l e c t i o n

, sc . manual frequency 729 , sc . l i n e s e l e c t i o n , s e l f . d r i f t t r a c k e r , sc .
s i d e b a n d c o o l i n g e n a b l e )

i f sc . f r e q u e n c y s e l e c t i o n == ’ auto ’ :
t rap = s e l f . parameters . TrapFrequencies
s i d e b a n d c o o l i n g f r e q u e n c y = cm. add s idebands ( s i d eband coo l i ng f r equency , sc .

s i d e b a n d s e l e c t i o n , trap )
s e l f . parameters [ ’ SidebandCool ing . s i d e b a n d c o o l i n g f r e q u e n c y 7 2 9 ’ ] =

s i d e b a n d c o o l i n g f r e q u e n c y

def s e t u p i n i t i a l s w i t c h e s ( s e l f ) :
s e l f . p u l s e r . switch manual ( ’ c r y s t a l l i z a t i o n ’ , Fa l se )
#swi tch o f f 729 at the beg inning
s e l f . p u l s e r . output ( ’ 729DP’ , Fa l se )

def p l o t c u r r e n t s e q u e n c e ( s e l f , cxn ) :
from common . ok fpga s e rv e r s . p u l s e r . pu l s e s equence s . p l o t s equence import

SequencePlot te r
dds = cxn . p u l s e r . human readable dds ( )
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t t l = cxn . p u l s e r . human readab le t t l ( )
channe l s = cxn . p u l s e r . g e t channe l s ( ) . a sar ray
sp = SequencePlot te r ( t t l . asarray , dds . a s l i s t , channe l s )
sp . makePlot ( )

def run ( s e l f , cxn , context ) :
th r e sho ld = i n t ( s e l f . parameters . StateReadout . s t a t e r e a d o u t t h r e s h o l d )
r e p e t i t i o n s = i n t ( s e l f . parameters . StateReadout . repeat each measurement )
pu l s e s equence = s e l f . pu l s e s equence ( s e l f . parameters )
pu l s e s equence . programSequence ( s e l f . p u l s e r )

# s e l f . p l o t cu r r en t s e quence ( cxn )
i f s e l f . use camera :

#pr in t ’ s t a r t i n g a c q u i s i t i o n ’
s e l f . camera . s e t n u m b e r k i n e t i c s ( r e p e t i t i o n s )
s e l f . camera . s t a r t a c q u i s i t i o n ( )

s e l f . p u l s e r . start number ( r e p e t i t i o n s )
s e l f . p u l s e r . wa i t sequence done ( )
s e l f . p u l s e r . s top sequence ( )
i f not s e l f . use camera :

#ge t percentage o f the e x c i t a t i o n us ing the PMT th r e s ho l d
readouts = s e l f . p u l s e r . g e t r eadout count s ( ) . a sar ray
s e l f . save data ( readouts )
i f l en ( readouts ) :

p e r c e x c i t e d = numpy . count nonzero ( readouts <= thre sho ld ) / f l o a t ( l en (
readouts ) )

else :
#got no readouts
p e r c e x c i t e d = −1.0

i o n s t a t e = [ p e r c e x c i t e d ]
# pr in t readouts

else :
#ge t the percentage o f e x c i t a t i o n us ing the camera s t a t e readout
proceed = s e l f . camera . w a i t f o r k i n e t i c ( )
i f not proceed :

s e l f . camera . a b o r t a c q u i s i t i o n ( )

s e l f . f i n a l i z e ( cxn , context )
raise Exception ( ”Did not get a l l k i n e t i c images from camera” )

images = s e l f . camera . g e t a c q u i r e d d a t a ( r e p e t i t i o n s ) . a sar ray
s e l f . camera . a b o r t a c q u i s i t i o n ( )
x p i x e l s = i n t ( ( s e l f . image reg ion [ 3 ] − s e l f . image reg ion [ 2 ] + 1 . ) / ( s e l f .

image reg ion [ 0 ] ) )
y p i x e l s = i n t ( s e l f . image reg ion [ 5 ] − s e l f . image reg ion [ 4 ] + 1 . ) / ( s e l f .

image reg ion [ 1 ] )
images = numpy . reshape ( images , ( r e p e t i t i o n s , y p i x e l s , x p i x e l s ) )
readouts , c o n f i d e n c e s = s e l f . f i t t e r . s t a t e d e t e c t i o n ( images )
i o n s t a t e = 1 − readouts . mean( a x i s = 0)
#us e f u l f o r debugging , sav ing the images

# numpy . save ( ’ readout {} ’ . format ( i n t ( time . time () ) ) , images )
s e l f . s a v e c o n f i d e n c e s ( c o n f i d e n c e s )

return i o n s t a t e , readouts

@property
def o u t p u t s i z e ( s e l f ) :

i f s e l f . use camera :
return i n t ( s e l f . parameters . IonsOnCamera . ion number )

else :
return 1

def f i n a l i z e ( s e l f , cxn , context ) :
i f s e l f . use camera :

#i f used the camera , re turn i t to the o r i g i n a l s e t t i n g s
s e l f . camera . s e t t r i g g e r m o d e ( s e l f . i n i t i a l t r i g g e r m o d e )
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s e l f . camera . s e t ex po s u r e t i me ( s e l f . i n i t i a l e x p o s u r e )
s e l f . camera . s e t i m a g e r e g i o n ( s e l f . i n i t i a l r e g i o n )
i f s e l f . c a m e r a i n i t i a l l y l i v e d i s p l a y :

s e l f . camera . s t a r t l i v e d i s p l a y ( )

def save data ( s e l f , readouts ) :
#save the current readouts
i t e r s = numpy . o n e s l i k e ( readouts ) ∗ s e l f . r e a d o u t s a v e i t e r a t i o n
s e l f . dv . add (numpy . vstack ( ( i t e r s , readouts ) ) . t ranspose ( ) , context = s e l f .

r e adout save cont ex t )
s e l f . r e a d o u t s a v e i t e r a t i o n += 1
s e l f . t o t a l r e a d o u t s . extend ( readouts )
i f ( l en ( s e l f . t o t a l r e a d o u t s ) >= 500) :

h i s t , b ins = numpy . histogram ( s e l f . t o t a l r e a d o u t s , 50)
s e l f . dv . cd ( s e l f . s a v e d i r e c t o r y , True , context = s e l f . h i s tog ram save contex t )
s e l f . dv . new( ’ Histogram {} ’ . format ( s e l f . datasetNameAppend ) , [ ( ’ Counts ’ , ’Arb ’ ) ] , [ (

’ Occurence ’ , ’Arb ’ , ’Arb ’ ) ] , context = s e l f . h i s tog ram save contex t )
s e l f . dv . add (numpy . vstack ( ( b ins [ 0 : −1 ] , h i s t ) ) . t ranspose ( ) , context = s e l f .

h i s tog ram save contex t )
s e l f . dv . add parameter ( ’ Histogram729 ’ , True , context = s e l f .

h i s tog ram save contex t )
s e l f . t o t a l r e a d o u t s = [ ]

def s a v e c o n f i d e n c e s ( s e l f , c o n f i d e n c e s ) :
’ ’ ’
saves con f idences read ings f o r the camera s t a t e d e t e c t i on
’ ’ ’
s e l f . t o t a l c a m e r a c o n f i d e n c e s . extend ( c o n f i d e n c e s )
i f ( l en ( s e l f . t o t a l c a m e r a c o n f i d e n c e s ) >= 300) :

h i s t , b ins = numpy . histogram ( s e l f . t o t a l c amera con f i d enc e s , 30)
s e l f . dv . cd ( s e l f . s a v e d i r e c t o r y , True , context = s e l f . h i s tog ram save contex t )
s e l f . dv . new( ’ Histogram Camera {} ’ . format ( s e l f . datasetNameAppend ) , [ ( ’ Counts ’ , ’

Arb ’ ) ] , [ ( ’ Occurence ’ , ’Arb ’ , ’Arb ’ ) ] , context = s e l f . h i s tog ram save contex t )
s e l f . dv . add (numpy . vstack ( ( b ins [ 0 : −1 ] , h i s t ) ) . t ranspose ( ) , context = s e l f .

h i s tog ram save contex t )
s e l f . dv . add parameter ( ’ HistogramCameraConfidence ’ , True , context = s e l f .

h i s tog ram save contex t )
s e l f . t o t a l c a m e r a c o n f i d e n c e s = [ ]

A.1.3 Drift Tracker Server

The narrow transition between the S1/2 and D5/2 states requires precise control of the 729 nm
laser frequency and the local magnetic field at the ion position. While the laser frequency
is referenced to a high finesse cavity [52, 9], the cavity length may drift due to thermal
expansion and contraction of the ultra low expansion (ULE) material. The stability of
the local magnetic field is determined by the fluctuations in the current circulating in the
magnetic field coils, thermal effects affecting their position, and external magnetic field
fluctuations.

The purpose of the Drift Tracker server is to facilitate tracking drifts of both laser fre-
quency and the local magnetic field. Both quantities are determined by measuring frequen-
cies of two carrier transitions between chosen magnetic sublevels of S1/2 and D5/2. Once the
frequencies of two carrier transitions are measured, typically by using a Ramsey technique
described in Appendix B.5, the frequencies of the transitions as well as their names are
submitted to Drift Tracking Server:
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cxn . s d t r a c k e r . set measurements (
[ ( ’S−1/2D+3/2 ’ , WithUnit (−16.813 , ’MHz ’ ) ) , ( ’S+1/2D+5/2 ’ , WithUnit (−15.68 , ’MHz ’ ) ) ]
)

The submission may be done through an experimental script or a GUI interface. It is also
possible to submit the frequency of only one line, assuming that only the magnetic field has
drifted. The server uses the submitted information to calculate the magnetic field B and the
zero-field splitting E0, which measures the drift in the cavity frequency:

ES↔D = E0 + µB
(
mSgS1/2 −mDgD5/2

)
(A.1)

where µB is the Bohr magneton, mS and mD as the magnetic sublevels of the S1/2 and D5/2

energy levels. See [10] for more details. While the corresponding Lange g-factors may be
computed to be gS1/2 = 2 and gD5/2 = 1.2 using the well-known relationship [43],

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
(A.2)

it is more precise to use the experimentally measured values of gS1/2 = 2.00225664(9) [53]
and gD5/2 = 1.2003340(3) [54], reflecting the necessary relativistic and QED corrections to
the formula.

The server performs a linear fit to the magnetic field and cavity center drifts. This allows
to extrapolate the trend into the future: whenever a new experiment is run, the server will
provide the predicted values for all of the required transition frequencies.

A.1.4 Pulse Sequence Synthesis

Fundamentally, every pulse sequence is a just collection of TTL and DDS pulses. Every pulse
has a start time and a duration. The DDS pulses additionally specify, frequency, amplitude,
and an optional phase. These pulses are programmed to the Pulser FPGA before execution.
The FPGA hardware is described in detail in Thaned Pruttivarasin’s thesis [9]. While
pulse sequences for manipulating the state of the ion may contain hundreds of individual
pulses, there is usually no need to individually specify their timing and parameters. Pulse
sequences consist of logical components: typically they involve Doppler cooling, optical
pumping, sideband cooling, etc. If these logical components or subsequences are made
modular, they become easily reusable in a variety of composite sequences. This minimizes
efforts of creating a new complex pulse sequence and greatly reduces the errors in the process.
Here we provide a tutorial on our implementation of the pulse sequence synthesis. It is
accurate as of pulse sequence version 1.1, and is, of course, subject to future modifications.
For the latest description, see the common GitHub Repository Wiki.

To achieve the desired modularity, every sequence inherits from the Python base class
pulse sequence. The methods contained in the base class allow the user to easily mod-
ify and interact with the pulse sequences. When inheriting from the pulse sequence, the
user has to overwrite several constants describing the new sequence: required parameters

https://github.com/HaeffnerLab/Haeffner-Lab-LabRAD-Tools
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lists the parameters required by the new sequence, required subsequences lists the sub-
sequences added to the new sequence, and replaced parameters is a dictionary of which
parameters of the added subsequences will be overwritten. Finally, the user has to implement
the method def sequence(self): where the new sequence is contained. As an illustrating
example, let us the review the spectrum rabi pulse sequence used both by Rabi flopping
experiments and measurements of the S1/2 −D5/2 spectra:

from common . ok fpga s e rve r s . p u l s e r . pu l s e s equence s . pu l s e s equence import pu l s e s equence
from subsequences . RepumpDwithDoppler import d op p l e r c oo l i n g a f t e r r ep u mp d
from subsequences . EmptySequence import empty sequence
from subsequences . OpticalPumping import opt ica l pumping
from subsequences . RabiExc i tat ion import r a b i e x c i t a t i o n
from subsequences . Tomography import tomography readout
from subsequences . TurnOffAll import t u r n o f f a l l
from subsequences . SidebandCool ing import s i d eband coo l i ng
from l abrad . un i t s import WithUnit
from t r e e d i c t import TreeDict

class spect rum rabi ( pu l s e s equence ) :

r equ i r ed paramete r s = [
( ’ Heating ’ , ’ background heat ing t ime ’ ) ,
( ’ OpticalPumping ’ , ’ opt i ca l pumping enab l e ’ ) ,
( ’ SidebandCool ing ’ , ’ s i d e b a n d c o o l i n g e n a b l e ’ ) ,
]

r equ i r ed subsequence s = [ dopp l e r coo l i ng a f t e r r epump d , empty sequence , opt ica l pumping
, r a b i e x c i t a t i o n , tomography readout , t u r n o f f a l l , s i d eband coo l i ng ]

r ep laced paramete r s = {
empty sequence : [ ( ’ EmptySequence ’ , ’ empty sequence durat ion ’ ) ]

}

def sequence ( s e l f ) :
p = s e l f . parameters
s e l f . end = WithUnit (10 , ’ us ’ )
s e l f . addSequence ( t u r n o f f a l l )
s e l f . addSequence ( do p p l e r c oo l i n g a f t e r r ep u mp d )
i f p . OpticalPumping . opt i ca l pumping enab l e :

s e l f . addSequence ( opt ica l pumping )
i f p . SidebandCool ing . s i d e b a n d c o o l i n g e n a b l e :

s e l f . addSequence ( s i d eband coo l i ng )
s e l f . addSequence ( empty sequence , TreeDict . f romdict ({ ’ EmptySequence .

empty sequence durat ion ’ : p . Heating . background heat ing t ime }) )
s e l f . addSequence ( r a b i e x c i t a t i o n )
s e l f . addSequence ( tomography readout )

One can see that spectrum rabi inherits from the pulse sequence class. It speci-
fies three required parameters that are directly used in the sequence method. For exam-
ple, based on the parameter p.OpticalPumping.optical pumping enable, a decision is
made whether or not to add the optical pumping subsequence. This pulse sequence does not
explicitly specify any DDS or TTL pulses, the pulses are added via the appropriate subse-
quences. The subsequences are added using the self.addSequence command. Whenever a
subsequence is added, it also has to be included required subsequences list. All of the
subsequences are themselves full-fledged pulse sequence as they also inherit from the same
pulse sequence base class.
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Each pulse sequence has two variables self.start and self.end that keep track of the tim-
ing. The variable self.start is used to denote when the pulse sequence begins. All the pulses
of that sequence are specified relative to this starting position. The variable self.end de-
notes the current end time of pulse sequence. The default behavior of the self.addSequence
method is to append the added subsequence. This means that the start value of the added
subsequence will be set equal to the end value of top level sequence. When pulses are added in
the subsequence, its end value will advance. The end value of the top level sequence will then
be updated to match the end value of the subsequence. It is also possible to add the subse-
quence at an arbitrary time point by using the position argument of the self.addSequence
method. This behavior is illustrated using the simple turn off all subsequence.
from common . ok fpga s e rve r s . p u l s e r . pu l s e s equence s . pu l s e s equence import pu l s e s equence
from l abrad . un i t s import WithUnit

class t u r n o f f a l l ( pu l s e s equence ) :

def sequence ( s e l f ) :
dur = WithUnit (50 , ’ us ’ )
for channel in [ ’ 729 ’ , ’ 397 ’ , ’ 854 ’ , ’ 866 ’ , ’ r a d i a l ’ ] :

s e l f . addDDS( channel , s e l f . s t a r t , dur , WithUnit (0 , ’MHz ’ ) , WithUnit (0 , ’dBm ’ ) )
s e l f . end = s e l f . s t a r t + dur

All of the DDS pulses here simultaneously begin at the sequence’s self.start position.
When this subsequence is added to spectrum rabi sequence, self.start = 10 µs because
that was the end position of spectrum rabi when the subsequence is added. All of the
DDS pulses are 50 µs long, hence we increment the end position of turn off all by the same
amount. This is then used to recalculate the new end position of spectrum rabi to make
sure other subsequences are added to the correct location.

The pulse sequence also demonstrates the syntax for adding DDS pulses. The arguments
are the channel name, start time, duration time, frequency, amplitude, and the pulse phase.
If the phase is not specified, it is set to 0 degrees. The special values of frequency of 0
MHz or amplitude of 0 dBm are used to denote the off settings of the channel. There is
configuration file called pulse sequence config.py that contains optional conversions of
the frequencies, amplitudes and phases of the added pulses. This is used, for example, to
specify laser frequencies as seen by the ion, i.e double of the frequency when the DDS pulse
drives an AOM in a double pass configuration. The syntax for the addTTL command only
need the first three arguments: channel name, start, and duration. One can also apply TTL
pulses on internal channels called TimeResolvedCount and ReadoutCount in order to
record timetags of the pulses arriving from the PMT or the total number of the arriving
photons, respectively.

The modular nature of the subsequences allows for another way of repurposing the struc-
ture of a subsequence. For example, the actual pulse sequences for Doppler cooling and
state readouts are the same: both involve switching on 397 nm and 866 nm lasers at spec-
ified frequencies and for a specified duration. This is reflected in the way we compose the
sequences.
from common . ok fpga s e rve r s . p u l s e r . pu l s e s equence s . pu l s e s equence import pu l s e s equence
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class d o p p l e r c o o l i n g ( pu l s e s equence ) :

r equ i r ed paramete r s = [
( ’ DopplerCool ing ’ , ’ d o p p l e r c o o l i n g f r e q u e n c y 3 9 7 ’ ) ,
( ’ DopplerCool ing ’ , ’ dopp l e r coo l i ng amp l i tude 397 ’ ) ,
( ’ DopplerCool ing ’ , ’ d o p p l e r c o o l i n g f r e q u e n c y 8 6 6 ’ ) ,
( ’ DopplerCool ing ’ , ’ dopp l e r coo l i ng amp l i tude 866 ’ ) ,
( ’ DopplerCool ing ’ , ’ d o p p l e r c o o l i n g d u r a t i o n ’ ) ,
( ’ DopplerCool ing ’ , ’ dopp l e r coo l i ng r epump add i t i ona l ’ )
]

def sequence ( s e l f ) :
p = s e l f . parameters . DopplerCool ing
repump duration = p . d o p p l e r c o o l i n g d u r a t i o n + p . dopp l e r coo l i ng r epump add i t i ona l
s e l f . addDDS ( ’ 397 ’ , s e l f . s t a r t , p . d o p p l e r c o o l i n g d u r a t i o n , p .

dopp l e r coo l i ng f r equency 397 , p . dopp l e r coo l i ng amp l i tude 397 )
s e l f . addDDS ( ’ 866 ’ , s e l f . s t a r t , repump duration , p . dopp l e r coo l i ng f r equenc y 866 , p .

dopp l e r coo l i ng amp l i tude 866 )
s e l f . end = s e l f . s t a r t + repump duration

from common . ok fpga s e rve r s . p u l s e r . pu l s e s equence s . pu l s e s equence import pu l s e s equence
from l a t t i c e . s c r i p t s . PulseSequences . subsequences . DopplerCool ing import d o p p l e r c o o l i n g
from t r e e d i c t import TreeDict

class s t a t e r e a d o u t ( pu l s e s equence ) :
’ ’ ’
Pulse sequence fo r reading out the s t a t e o f the ion .
’ ’ ’
r equ i r ed paramete r s = [

( ’ StateReadout ’ , ’ s t a t e r e a d o u t f r e q u e n c y 3 9 7 ’ ) ,
( ’ StateReadout ’ , ’ s t a t e r eadout amp l i tude 397 ’ ) ,
( ’ StateReadout ’ , ’ s t a t e r e a d o u t f r e q u e n c y 8 6 6 ’ ) ,
( ’ StateReadout ’ , ’ s t a t e r eadout amp l i tude 866 ’ ) ,
( ’ StateReadout ’ , ’ s t a t e r e a d o u t d u r a t i o n ’ ) ,
( ’ StateReadout ’ , ’ u s e camera fo r r eadout ’ ) ,
( ’ StateReadout ’ , ’ c amera t r i gge r w id th ’ ) ,
( ’ StateReadout ’ , ’ c a m e r a t r a n s f e r a d d i t i o n a l ’ )
]

r equ i r ed subsequence s = [ d o p p l e r c o o l i n g ]
r ep laced paramete r s = {

d o p p l e r c o o l i n g : [ ( ’ DopplerCool ing ’ , ’ d o p p l e r c o o l i n g f r e q u e n c y 3 9 7 ’ ) ,
( ’ DopplerCool ing ’ , ’ dopp l e r coo l i ng amp l i tude 397 ’ ) ,
( ’ DopplerCool ing ’ , ’ d o p p l e r c o o l i n g f r e q u e n c y 8 6 6 ’ ) ,
( ’ DopplerCool ing ’ , ’ dopp l e r coo l i ng amp l i tude 866 ’ ) ,
( ’ DopplerCool ing ’ , ’ d o p p l e r c o o l i n g d u r a t i o n ’ ) ,

]
}

def sequence ( s e l f ) :
s t = s e l f . parameters . StateReadout
r e p l a c e = {
’ DopplerCool ing . d o p p l e r c o o l i n g f r e q u e n c y 3 9 7 ’ : s t . s t a t e r eadout f r equency 397 ,
’ DopplerCool ing . dopp l e r coo l i ng amp l i tude 397 ’ : s t . s ta t e r eadout ampl i tude 397 ,
’ DopplerCool ing . d o p p l e r c o o l i n g f r e q u e n c y 8 6 6 ’ : s t . s t a t e r eadout f r equency 866 ,
’ DopplerCool ing . dopp l e r coo l i ng amp l i tude 866 ’ : s t . s ta t e r eadout ampl i tude 866 ,
’ DopplerCool ing . d o p p l e r c o o l i n g d u r a t i o n ’ : s t . s t a t e r e a d o u t d u r a t i o n + s t .

c a m e r a t r a n s f e r a d d i t i o n a l ,
}

s e l f . addSequence ( dopp l e r coo l i ng , TreeDict . f romdict ( r e p l a c e ) )
s e l f . addTTL( ’ ReadoutCount ’ , s e l f . s t a r t , s t . s t a t e r e a d o u t d u r a t i o n )
i f s t . u s e camera fo r r eadout :
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s e l f . addTTL( ’ camera ’ , s e l f . s t a r t , s t . camera t r i gge r w id th )

Instead of specifying the same pulses in state readout pulse sequences as in doppler cooling,
we add doppler cooling as a subsequence while replacing all of the frequencies, amplitudes
and durations with those of state readout. We use the TreeDict hierarchical container
class that allows for attribute-like access to the elements.

When the desired sequence is specified, we can use all required parameters() method
to get a list of all the parameters required by the sequence. The list is used to automatically
request the necessary parameters from a database, as described in the ScriptScanner Frame-
work section. A dictionary containing all of the required parameters should be passed to
the constructor when initializing the pulse sequence class. Then the pulse sequence can be
programmed to Pulser with the programSequence(self, pulser): command where pulser
is a reference to the Pulser server. One can also use the SequencePlotter class to make a
plot of the programmed pulse sequence to confirm the pulses look as intended.

While we haven’t described every pulse sequence used in the experiments, the presented
features should be sufficient to comprehend their functionality. All of the pulse sequences
used in the experiment can be found on the experimental GitHub Repository.

A.2 GUI Applications

In this section we illustrate how to create graphical user interfaces employing the PyQt
Python library with LabRAD. We consider a simple application called pmtWidget that
provides the user with a graphical access to the PMT functionality.

from PyQt4 import QtGui , u i c
from tw i s t ed . i n t e r n e t . d e f e r import i n l i n e C a l l b a c k s
import os

SIGNALID = 874193

class pmtWidget ( QtGui . QWidget ) :
def i n i t ( s e l f , r eac tor , parent=None ) :

super ( pmtWidget , s e l f ) . i n i t ( parent )
s e l f . r e a c t o r = r e a c t o r
basepath = os . path . dirname ( f i l e )
path = os . path . j o i n ( basepath , ” qtu i ” , ” pmtfrontend . u i ” )
u i c . loadUi ( path , s e l f )
s e l f . connect ( )

@ in l ineCa l lbacks
def connect ( s e l f ) :

from l abrad . wrappers import connectAsync
from l abrad import types as T
s e l f .T = T
cxn = y i e l d connectAsync ( )
s e l f . s e r v e r = cxn . normalpmtflow
y i e l d s e l f . i n i t i a l i z e C o n t e n t ( )
y i e l d s e l f . s e t u p L i s t e n e r s ( )
#connect f unc t i ons
s e l f . pushButton . togg l ed . connect ( s e l f . on togg l ed )
s e l f . newSet . c l i c k e d . connect ( s e l f . onNewSet )
s e l f . doubleSpinBox . valueChanged . connect ( s e l f . onNewDuration )

https://github.com/HaeffnerLab/HaeffnerLabLattice
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s e l f . comboBox . currentIndexChanged . connect ( s e l f . onNewMode)

@in l ineCa l lbacks
def s e t u p L i s t e n e r s ( s e l f ) :

y i e l d s e l f . s e r v e r . s i gna l new count (SIGNALID)
y i e l d s e l f . s e r v e r . s i g n a l n e w s e t t i n g (SIGNALID + 1)
y i e l d s e l f . s e r v e r . addLis tener ( l i s t e n e r = s e l f . f o l l o w S i g n a l , source = None , ID =

SIGNALID)
y i e l d s e l f . s e r v e r . addLis tener ( l i s t e n e r = s e l f . f o l l o w S e t t i n g , source = None , ID =

SIGNALID + 1)

@in l ineCa l lbacks
def i n i t i a l i z e C o n t e n t ( s e l f ) :

datase t = y i e l d s e l f . s e r v e r . cu r r en tda ta s e t ( )
s e l f . l i n e E d i t . setText ( datase t )
running = y i e l d s e l f . s e r v e r . i s runn ing ( )
s e l f . pushButton . setChecked ( running )
s e l f . setText ( s e l f . pushButton )
durat ion = y i e l d s e l f . s e r v e r . g e t t i m e l e n g t h ( )
try :

ran = y i e l d s e l f . s e r v e r . g e t t i m e l e n g t h r a n g e ( )
except Exception :

#not ab l e to ob ta in
pass

else :
s e l f . doubleSpinBox . setRange (∗ ran )

mode = y i e l d s e l f . s e r v e r . getcurrentmode ( )
index = s e l f . comboBox . f indText (mode)
s e l f . comboBox . setCurrentIndex ( index )
s e l f . lcdNumber . d i sp l a y ( ’OFF ’ )

s e l f . doubleSpinBox . setValue ( durat ion )

def f o l l o w S i g n a l ( s e l f , s i gna l , va lue ) :
#pr in t s i gna l , va lue
s e l f . lcdNumber . d i sp l a y ( va lue )

def f o l l o w S e t t i n g ( s e l f , s i gna l , message ) :
s e t t i ng , va l = message
i f s e t t i n g == ”mode” :

index = s e l f . comboBox . f indText ( va l )
s e l f . comboBox . b l o c k S i g n a l s ( True )
s e l f . comboBox . setCurrentIndex ( index )
s e l f . comboBox . b l o c k S i g n a l s ( Fa l se )

i f s e t t i n g == ’ datase t ’ :
s e l f . l i n e E d i t . b l o c k S i g n a l s ( True )
s e l f . l i n e E d i t . setText ( va l )
s e l f . l i n e E d i t . b l o c k S i g n a l s ( Fa l se )

i f s e t t i n g == ’ s t a t e ’ :
s e l f . pushButton . b l o c k S i g n a l s ( True )
i f va l ==’ on ’ :

s e l f . pushButton . setChecked ( True )
else :

s e l f . pushButton . setChecked ( Fa l se )
s e l f . lcdNumber . d i sp l a y ( ’OFF ’ )

s e l f . pushButton . b l o c k S i g n a l s ( Fa l se )
s e l f . setText ( s e l f . pushButton )

i f s e t t i n g == ’ t ime length ’ :
s e l f . doubleSpinBox . b l o c k S i g n a l s ( True )
s e l f . doubleSpinBox . setValue ( f l o a t ( va l ) )
s e l f . doubleSpinBox . b l o c k S i g n a l s ( Fa l se )

@ in l ineCa l lbacks
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def on togg l ed ( s e l f , s t a t e ) :
i f s t a t e :

y i e l d s e l f . s e r v e r . r e co rd data ( )
newset = y i e l d s e l f . s e r v e r . cu r r en tda ta s e t ( )
s e l f . l i n e E d i t . setText ( newset )

else :
y i e l d s e l f . s e r v e r . s t op r e co rd ing ( )
s e l f . lcdNumber . d i sp l a y ( ’OFF ’ )

s e l f . setText ( s e l f . pushButton )

@in l ineCa l lbacks
def onNewSet ( s e l f , x ) :

newset = y i e l d s e l f . s e r v e r . s t a r t n e w d a t a s e t ( )
s e l f . l i n e E d i t . setText ( newset )

@ in l ineCa l lbacks
def onNewMode( s e l f , mode) :

t ex t = s t r ( s e l f . comboBox . itemText (mode) )
y i e l d s e l f . s e r v e r . set mode ( t ext )

def setText ( s e l f , obj ) :
s t a t e = obj . isChecked ( )
i f s t a t e :

obj . setText ( ’ON’ )
else :

obj . setText ( ’OFF ’ )

def onNewData( s e l f , count ) :
s e l f . lcdNumber . d i sp l a y ( count )

@in l ineCa l lbacks
def onNewDuration ( s e l f , va lue ) :

va lue = s e l f .T. Value ( value , ’ s ’ )
y i e l d s e l f . s e r v e r . s e t t i m e l e n g t h ( va lue )

def c loseEvent ( s e l f , x ) :
s e l f . r e a c t o r . stop ( )

i f name ==” main ” :
a = QtGui . QApplication ( [ ] )
import q t 4 r ea c to r
q t 4 r ea c to r . i n s t a l l ( )
from tw i s t ed . i n t e r n e t import r e a c t o r
pmtWidget = pmtWidget ( r e a c t o r )
pmtWidget . show ( )
r e a c t o r . run ( )

The application is created below if name == ´ main ’:. The first step after
creating a PyQt application is to install the qt4reactor. Typically, the event scheduling within
programs written with the twisted asynchronous framework is controlled by the twisted
reactor. Installing the qt4reactor combines the graphical Qt event loop with the twisted
event loop, allowing the two asynchronous frameworks to function well together. When the
widget is created, the user interface is loaded from an external pmtfrontend.ui file. The
file is created with QtDesigner where it is possible to draw the needed buttons, displays
and other elements. They can also created without the .ui file by creating the individual
elements programmatically.

Once the user interface is loaded, the widget establishes a connection to LabRAD. This
is an example of an asynchronous connection, because in addition to controlling LabRAD
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servers the widget is also listening for signals that may be emitted from those servers. Inside
the def connect method, we also ’wire up’ the individual graphical elements to the tasks
they are supposed to execute. For example, when the newSet button is clicked by the user,
the self.onNewSet method will be executed. This particular method will communicate
with the NormalPMTFlow server to create a new dataset.

The widget should always remain up to date of the server status. even when a change is
made by a different client. To accomplish this, the widget subscribes to the signal new setting
signal provided by the server. Whenever that signal is called, the widget will process the
received the message in the followSetting method, updating the display.

The created graphical widgets may run independently or be combined into a single win-
dow. This is illustrated with the LatticeGUI.py file:

from PyQt4 import QtGui
from tw i s t ed . i n t e r n e t . d e f e r import i n l i n e C a l l b a c k s

class LATTICE GUI( QtGui . QMainWindow) :
def i n i t ( s e l f , r eac tor , c l ipboard , parent=None ) :

super (LATTICE GUI , s e l f ) . i n i t ( parent )
s e l f . c l i pboa rd = c l ipboa rd
s e l f . r e a c t o r = r e a c t o r
s e l f . connec t l abrad ( )

@ in l ineCa l lbacks
def connect l abrad ( s e l f ) :

from common . c l i e n t s . connect ion import connect ion
cxn = connect ion ( )
y i e l d cxn . connect ( )
s e l f . c r e a t e l a y o u t ( cxn )

def c r e a t e l a y o u t ( s e l f , cxn ) :
c o n t r l w i d g e t = s e l f . makeControlWidget ( r eac tor , cxn )
histogram = s e l f . make histogram widget ( r eac tor , cxn )
d r i f t t r a c k e r = s e l f . m a k e d r i f t t r a c k e r w i d g e t ( r eac tor , cxn )
centra lWidget = QtGui . QWidget ( )
layout = QtGui . QHBoxLayout ( )
from common . c l i e n t s . s c r i p t s c a n n e r g u i . s c r i p t s c a n n e r g u i import s c r i p t s c a n n e r g u i
s c r i p t s c a n n e r = s c r i p t s c a n n e r g u i ( r eac tor , cxn )
s c r i p t s c a n n e r . show ( )
s e l f . tabWidget = QtGui . QTabWidget ( )
s e l f . tabWidget . addTab( cont r l w idge t , ’&Control ’ )
s e l f . tabWidget . addTab( histogram , ’&Readout Histogram ’ )
s e l f . tabWidget . addTab( d r i f t t r a c k e r , ’&SD D r i f t Tracker ’ )
layout . addWidget ( s e l f . tabWidget )
centra lWidget . setLayout ( layout )
s e l f . setCentra lWidget ( centra lWidget )

def m a k e d r i f t t r a c k e r w i d g e t ( s e l f , r eac tor , cxn ) :
from common . c l i e n t s . d r i f t t r a c k e r . d r i f t t r a c k e r import d r i f t t r a c k e r
widget = d r i f t t r a c k e r ( r eac tor , cxn = cxn , c l i pboa rd = s e l f . c l i pboa rd )
return widget

def make histogram widget ( s e l f , r eac tor , cxn ) :
h i s tograms tab = QtGui . QTabWidget ( )
from common . c l i e n t s . readout h i s togram import readout h i s togram
pmt readout = readout h i s togram ( reactor , cxn )
h i s tograms tab . addTab( pmt readout , ”PMT” )
from l a t t i c e . c l i e n t s . camera histogram import camera histogram
camera histogram widget = camera histogram ( reactor , cxn )
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hi s tograms tab . addTab( camera histogram widget , ”Camera” )
return hi s tograms tab

def makeTranslationStageWidget ( s e l f , r e a c t o r ) :
widget = QtGui . QWidget ( )
gr idLayout = QtGui . QGridLayout ( )
widget . setLayout ( gr idLayout )
return widget

def makeControlWidget ( s e l f , r eac tor , cxn ) :
widget = QtGui . QWidget ( )
from e l e c t r o d e c l i e n t . e l e c t r o d e import e l e c t r o d e w i d g e t
from common . c l i e n t s .CAVITY CONTROL import cavityWidget
from common . c l i e n t s . mu l t i p l exe r .MULTIPLEXER CONTROL import mult ip lexerWidget
from common . c l i e n t s .PMT CONTROL import pmtWidget
from common . c l i e n t s .SWITCH CONTROL import switchWidget
from common . c l i e n t s .DDS CONTROL import DDS CONTROL
from common . c l i e n t s .LINETRIGGER CONTROL import l i n e t r i g g e r W i d g e t
from q u i c k a c t i o n s . q u i c k a c t i o n s import a c t i o n s w i d g e t
from i n d i c a t o r . i n d i c a t o r import i n d i c a t o r w i d g e t
from agi lent E3633A . agi lent E3633A import magnet Control , oven Contro l
gr idLayout = QtGui . QGridLayout ( )
gr idLayout . addWidget ( e l e c t r o d e w i d g e t ( r eac tor , cxn ) , 0 , 0 , 1 , 2 )
gr idLayout . addWidget ( a c t i o n s w i d g e t ( r eac tor , cxn ) , 1 , 0 , 1 , 2 )
gr idLayout . addWidget ( i n d i c a t o r w i d g e t ( r eac tor , cxn ) , 2 , 0 , 1 , 2 )
gr idLayout . addWidget ( magnet Control ( r eac tor , cxn ) , 3 , 0 , 1 , 1 )
gr idLayout . addWidget ( oven Contro l ( r eac tor , cxn ) , 3 , 1 , 1 , 1 )
gr idLayout . addWidget ( cavityWidget ( r e a c t o r ) , 0 , 2 , 3 , 2 )
gr idLayout . addWidget ( mult ip lexerWidget ( r e a c t o r ) , 0 , 4 , 3 , 1 )
gr idLayout . addWidget ( switchWidget ( r eac tor , cxn ) , 4 , 0 , 1 , 2 )
gr idLayout . addWidget ( pmtWidget ( r e a c t o r ) , 3 , 2 , 1 , 1 )
gr idLayout . addWidget ( l i n e t r i g g e r W i d g e t ( r eac tor , cxn ) , 3 , 3 , 1 , 1 )
gr idLayout . addWidget (DDS CONTROL( reactor , cxn ) , 3 , 4 , 1 , 1 )
widget . setLayout ( gr idLayout )
return widget

def c loseEvent ( s e l f , x ) :
s e l f . r e a c t o r . stop ( )

i f name ==” main ” :
a = QtGui . QApplication ( [ ] )
c l i pboa rd = a . c l i pboa rd ( )
import common . c l i e n t s . q t 4 r ea c t o r as q t 4 r ea c to r
q t 4 r ea c to r . i n s t a l l ( )
from tw i s t ed . i n t e r n e t import r e a c t o r
la t t i ceGUI = LATTICE GUI( reac tor , c l i pboa rd )
la t t i ceGUI . setWindowTitle ( ’ L a t t i c e GUI ’ )
l a t t i ceGUI . show ( )
r e a c t o r . run ( )

We create a MainWindow that contains multiple tabs provided by the QTabWidget.
Inside each tab, we programmatically place all of the required widgets. For example, the
pmtWidget discussed earlier is placed inside a grid layout under Control tab.
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Appendix B

Single Qubit Operations

This Chapter summarizes the conventions for single qubit operations and describes the proce-
dures for state tomography and Ramsey drift tracking. The conventions used in the presented
analysis were adopted from those used in Rainer Blatt’s group in Innsbruck.

B.1 Basis

Any superposition |ψ〉 = α|0〉+ β|1〉 can be represented as a point on the Bloch sphere:

|Ψ〉 = cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉 . (B.1)

We identify the atomic energy levels such that |D〉 is on top of the Bloch sphere:

|D〉 ≡ |0〉 =

(
1
0

)
, (B.2)

|S〉 ≡ |1〉 =

(
0
1

)
. (B.3)

Therefore, we refer to the elements in the density matrix in the following way:

ρ =

(
ρdd ρds
ρsd ρss

)
, (B.4)

where ρij = 〈I|ρ|J〉.
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B.2 Rotations

We first review the standard definitions of the Pauli matrices:

σ+ = |D〉〈S| =
(

0 1
0 0

)
, (B.5)

σ− = |S〉〈D| =
(

0 0
1 0

)
, (B.6)

σx = σ+ + σ− =

(
0 1
1 0

)
, (B.7)

σy = −i(σ+ − σ−) =

(
0 −i
i 0

)
, (B.8)

σz =

(
1 0
0 −1

)
. (B.9)

The single qubit evolution under carrier transitions is described by the Hamiltonian:

Hϕ =
h̄Ω

2

(
σ+e

iϕ + σ−e
−iϕ) . (B.10)

For an extensive derivation, see the steps leading up to eq. (73) of Leibfried et al. [2]. Note
that the sign of the laser phase φ was chosen in eq. (62) of the reference such that the
traveling light wave has the form ei(kx−wt+φ). Time evolution of this Hamiltonian results in
qubit rotations:

R(θ, ϕ) = e−iHϕt/h̄ = ei
θ
2

(σ+eiϕ+σ−e−iϕ) (B.11)

=

(
cos
(
θ
2

)
ieiϕ sin

(
θ
2

)
ie−iϕ sin

(
θ
2

)
cos
(
θ
2

) )
, (B.12)

where the angle θ is defined as θ = −Ωt. When the laser phase φ = 0, the state rotates
about the x-axis:

R(θ, 0) =

(
cos
(
θ
2

)
i sin

(
θ
2

)
i sin

(
θ
2

)
cos
(
θ
2

) ) . (B.13)

Specifically for a π
2

pulse applied to the ground state S = |1〉:

R(
π

2
, 0)|S〉 =

1√
2

(
1 i
i 1

)(
0
1

)
=

1√
2

(
i
1

)
=

1√
2

(|S〉+ i|D〉) . (B.14)

The result is an eigenstate of σy with eigenvalue of −1. Rotations about x do not follow the
right-hand rule. When the laser phase φ = π

2
, the state rotates about the y-axis:

R(θ,
π

2
) =

(
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) )
. (B.15)
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In the case of a π
2

pulse applied to the ground state:

R(
π

2
,
π

2
)|S〉 =

1√
2

(
1 −1
1 1

)(
0
1

)
=

1√
2

(
−1
1

)
=

1√
2

(|S〉 − |D〉) . (B.16)

The result is an eigenstate of σx with the eigenvalue of −1. So unlike rotation about σx,
rotations about σy do rotate according to the right-hand rule. Which axis follows the right-
hand rule is the consequence of the negative sign in the chosen definition for the angle θ.

B.3 Summary of Rotations

φ = 0:

R(θ, 0) =

(
cos
(
θ
2

)
i sin

(
θ
2

)
i sin

(
θ
2

)
cos
(
θ
2

) ) , (B.17)

R(
π

2
, 0) =

1√
2

(
1 i
i 1

)
, (B.18)

R(
π

2
, 0)|S〉 =

1√
2

(|S〉+ i|D〉) , (B.19)

R(
π

2
, 0)|D〉 =

1√
2

(|D〉+ i|S〉) . (B.20)

φ = π
2 :

R(θ,
π

2
) =

(
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) )
, (B.21)

R(
π

2
,
π

2
) =

1√
2

(
1 −1
1 1

)
, (B.22)

R(
π

2
,
π

2
)|S〉 =

1√
2

(|S〉 − |D〉) , (B.23)

R(
π

2
,
π

2
)|D〉 =

1√
2

(|S〉+ |D〉) . (B.24)

B.4 Tomography

An arbitrary density matrix for a mixed state qubit may be written as

ρ =
I + ~r · ~σ

2
≡
(

pd x+ iy
x− iy 1− pd

)
, (B.25)
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where we have defined the entries of ~r = (rx, ry, rz) to be:

rx = 2x , (B.26)

ry = −2y , (B.27)

rz = 2pd − 1 , (B.28)

with the corresponding limits:

−1/2 ≤x ≤ 1/2 , (B.29)

−1/2 ≤y ≤ 1/2 , (B.30)

0 ≤pd ≤ 1 . (B.31)

For a complete introduction see eq. (2.175) in Nielsen and Chuang [55]. The goal of state
tomography is to measure ~r or, equivalently, measure every element of the density matrix ρ.
This is done is three steps:

1. Measure the excited state population with the standard state readout method. This
immediately yields the entry pd.

2. Perform a rotation R(π
2
, 0). This transforms the state according to:

ρ2 = RρR† =

(
1
2

+ y −ip+ x+ i
2

ip+ x− i
2

1
2
− y

)
. (B.32)

Then measurement excited state population yields y + 1
2
:

3. Perform a rotation R(π
2
, π

2
). This transforms the state according to:

ρ3 = RρR† =

(
1
2
− x p+ iy − 1

2

p− iy − 1
2

x+ 1
2

)
. (B.33)

The excited state population is now 1
2
− x.

We see that by performing the three tomography steps we have measured pd, x, and y,
determining every entry of the density matrix ρ.

B.5 Ramsey Drift Tracker

The Ramsey drift tracker uses a Ramsey-type measurement to determine the drift of the
laser frequency wL with respect to the atomic resonance w0 by measuring the detuning ∆:

∆ = wL − w0 . (B.34)
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The detuning is defined according to experimental conventions as since blue-detuning corre-
sponds to ∆ > 0. To measure ∆, we prepare a superposition state by applying R(π

2
, 0) to

the ground state |S〉:
|Ψ0〉 = R(

π

2
, 0)|S〉 =

1√
2

(|S〉+ i|D〉) , (B.35)

with the corresponding density matrix:

ρ0 =

(
1
2

i
2

− i
2

1
2

)
. (B.36)

Then the state freely evolves for a duration τ . During this time, it will precess in the Bloch
sphere. This evolution of coherences in the absence of the laser field given by eq. 7.42 in
Ref. [43] with Ω = 0 with ρ̃12 ↔ ρsd.

dρsd
dt

= −i∆ρsd . (B.37)

The diagonal entries are unchanged and the coherence will evolve according to:

ρsd(t) = ρsd(0)e−i∆t , (B.38)

ρds(t) = ρsd(t)
∗ = ρsd(0)∗ei∆t = ρds(0)ei∆t . (B.39)

Thus, during the laser-off time, the evolution of the density matrix is given by:

ρ(t) =

(
1
2

i
2
ei∆t

− i
2
e−i∆t 1

2

)
, (B.40)

and, hence, the state after time t is

Ψ(t) =
1√
2

(|S〉+ iei∆t|D〉) . (B.41)

We see that the Bloch vector rotates clockwise around the z-axis for blue detuning ∆ > 0.
After the state evolution for a time τ , we preform another rotation: either R1 = R(π

2
, π

2
) or

R2 = R(π
2
,−π

2
). The excited state population p1 after the rotation R1 yields the real apart

of ρds = i
2
ei∆t, see the third step of state tomography:

p1 =
1

2
− Re(

i

2
ei∆τ ) =

1

2
+

1

2
sin(∆τ) . (B.42)

Similarly, the excited state population p2 after R2 is found to be:

p2 =
1

2
+ Re(

i

2
ei∆τ ) =

1

2
− 1

2
sin(∆τ) . (B.43)
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The average of the two measurements pavg = 1
2
(p1 + p2) gives the excitation of the initial π

2

pulse. This may be used to track drift in the laser intensity. The detuning is extracted from
the difference of the two measurements:

sin(∆τ) = p1 − p2 . (B.44)

The detuning in Hz, ∆f = ∆/2π is easily found:

∆f =
arcsin(p1 − p2)

2πτ
. (B.45)
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Appendix C

Numerical and Analytical
Calculations

C.1 Molecular Dynamics

In this section we describe the principles behind the molecular dynamics simulations with
trapped ion chains. The goal of the simulations is to determine the ion trajectories by
numerically integrating the equations of motions. It is able to simulate the dynamics in the
pseudopotential approximation or fully include the oscillating electric fields produced by a
Paul trap. Additionally, one can include laser-ion interaction to simulate processes such as
Doppler cooling and pulsed excitation.

This code has been developed and improved with helpful contributions from Thaned
Pruttivarasin, Mark Kokish, and Manuel Gessner. The latest version utilizes Verlet integra-
tion with core components written in Cython. This way it harnesses the speed of C code
while remaining easily accessible within a broader Python application that sets parameter
values and launches the simulations. The code is publicly accessible on a GitHub Repository.

C.1.1 Verlet Integration

To integrate the equations of motions, we use Verlet Integration, chosen as it reduces errors
compared to Euler’s method. Please refer to reference [56] for a thorough description. Given
the two previous two positions ~xn and ~xn−1, we compute the acceleration ~an = An(~xn) to
determine the next position after a time step ∆t:

~xn+1 = 2~xn − ~xn−1 + ~an∆t2 . (C.1)

In the next section we derive the acceleration term ~an experienced by the ions in a Paul trap.

https://github.com/HaeffnerLab/ion_molecular_dynamics
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C.1.2 Motion in the Trap

We follow the treatment of Leibfried et. al [2] where the potential of the ion trap is assumed
to be harmonic:

Φ(x, y, z, t) =
1

2
Udc(2z

2 − x2 − y2) +
1

2
Urf (x

2 − y2) cos(ωrf t) . (C.2)

In the expression above, Udc is the potential applied to the DC electrodes (U in Leibfried) and
Urf refers to the potential on the RF electrodes (Ũ in Leibfried), applied with radial frequency
ωrf . We use the special choice of coefficients α = β = −1, γ = 2 and α′ = −β′ = 1, γ′ = 0.

The secular motion of the ion can be described with a pseudopotential approximation.
The potential energy yields

Ψ(x, y, z) =
1

2
eUdc(2z

2 − x2 − y2) +
e2U2

rf

4mω2
rf

(x2 + y2) . (C.3)

From this, the trap frequencies are:

ωx = ωy =

√√√√ e

m

(
eU2

rf

2mω2
rf

− Udc
)
, (C.4)

ωz =

√
2eUdc
m

. (C.5)

In order to lift the degeneracy of the radial modes, we apply an additional static bias Ubias
on the RF electrodes as follows:

Φ(x, y, z, t) =
1

2
Udc(2z

2 − x2 − y2) +
1

2
Ubias(x

2 − y2) +
1

2
Urf (x

2 − y2) cos(ωrf t) . (C.6)

The Laplace’s equation 4Φ = 0 still holds with the additional bias term. The trap frequen-
cies are now non-degenerate and are given by:

ωx =

√√√√ e

m

(
eU2

rf

2mω2
rf

− Udc + Ubias

)
, (C.7)

ωy =

√√√√ e

m

(
eU2

rf

2mω2
rf

− Udc − Ubias
)
, (C.8)

ωz =

√
2eUdc
m

. (C.9)
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It is convenient to write the potential in terms of the trap frequencies instead of the
geometrical dimensions:

ω2
z =

2eUdc
m

, (C.10)

ω2
x + ω2

y + ω2
z =

e2U2
rf

m2ω2
rf

, (C.11)

ω2
x − ω2

y =
2eUbias
m

, (C.12)

leading to the following replacements of the voltages in terms of the desired effective trap
frequencies (ωx, ωy, ωz):

Udc =
1

2

m

e
ω2
z , (C.13)

Urf =
m

e
ωrf

√
ω2
x + ω2

y + ω2
z , (C.14)

Ubias =
1

2

m

e
(ω2

x − ω2
y) . (C.15)

Therefore, the potential may be written as

Φ(x, y, z, t) =
m

4e

[
2ωrf

√
ω2
x + ω2

y + ω2
z

(
x2 − y2

)
cos(ωrf t) + ω2

z(2z
2 − x2 − y2) +

(
ω2
x − ω2

y

)
(x2 − y2)

]
.

(C.16)

This leads to the following accelerations experienced by the ions:

ẍ =

[
1

2
(−ω2

x + ω2
y + ω2

z)− ωrf
√
ω2
x + ω2

y + ω2
z cos(ωrf t)

]
x , (C.17)

ÿ =

[
1

2
(ω2

x − ω2
y + ω2

z) + ωrf

√
ω2
x + ω2

y + ω2
z cos(ωrf t)

]
y , (C.18)

z̈ = −ω2
zz . (C.19)

C.1.3 Coulomb Repulsion

The Coulomb potential for N ions is given by

Φc =
∑
i<j

e2

4πε0

1

|ri − rj|
=
∑
i<j

e2

4πε0

1√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

. (C.20)
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This leads to the following accelerations experienced by the particle i:

ẍi =
1

m

∑
j 6=i

e2

4πε0

(xi − xj)
((xi − xj)2 + (yi − yj)2 + (zi − zj)2)

3
2

, (C.21)

ÿi =
1

m

∑
j 6=i

e2

4πε0

(yi − yj)
((xi − xj)2 + (yi − yj)2 + (zi − zj)2)

3
2

, (C.22)

z̈i =
1

m

∑
j 6=i

e2

4πε0

(zi − zj)
((xi − xj)2 + (yi − yj)2 + (zi − zj)2)

3
2

. (C.23)

C.1.4 Laser-Ion Interaction

In this section we compute the probabilities for the ion to be excited or de-excited at every
time step of the numerical simulation. We model the interaction of the laser with the two-
level atom using a general form of the Einstein’s equations [57]. In terms of the populations
of the excited and ground states pe and pg (called σbb and σaa in the reference):

dpe
dt

= −Γpe + Γl(pg − pe) , (C.24)

dpg
dt

= +Γpe + Γl(pe − pg) , (C.25)

where Γ is the rate of the spontaneous emission and Γl is the rate of laser interaction, which
is proportional to the laser intensity. In the steady state, dpg

dt
= dpe

dt
= 0. Using pg = 1− pe,

we have:

pe =
Γl

2Γl + Γ
=

1

2

2Γl
2Γl + Γ

. (C.26)

Our goal is to find the laser coupling rate Γl in terms of saturation and detuning. To
accomplish this we consider the optical Bloch equations [57]. The steady state solution is

pe =
1

2

seff

seff + 1
, (C.27)

allowing us to identify

Γl = Γ
seff

2
, (C.28)

where the saturation parameter seff is defined in terms of the Rabi frequency Ω and the
detuning ∆:

seff =
Ω2

2

∆2 + Γ2

4

. (C.29)

It is common to instead define the saturation parameter s0 as

s0 =
2Ω2

Γ2
= seff (∆ = 0) . (C.30)
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In this case,

seff =
s0(

2∆
Γ

)2
+ 1

, (C.31)

and the laser coupling rate is given by:

Γl =
Γ

2

s0(
2∆
Γ

)2
+ 1

. (C.32)

If we start in the ground state, then per unit time ∆t, the probability for the ion to get
excited is pexc = Γl∆t. Similarly, starting from the excited state, the total rate to be de-
excited is (Γl + Γ) ∆t, which is the sum of the rates of stimulated emission and spontaneous
emission. These probabilities are computed for every time step, and the stochastic nature of
the process requires us to average over multiple simulations to obtain accurate predictions.

C.2 Non-Linearity in the Ion Potential

In this section we calculate the amount of non-linearity seen by a single ion moving radially
in an ion chain. The calculation is relevant for the discussion of the normal modes of ion
motion presented in Section 4.2.1. We consider the motion of ion i, while all of the other
ions in the chain are assumed to be fixed at their equilibrium positions. We consider the
Taylor expansion of equation 4.2 and calculate the higher order term:

∂4V

∂q4
i

|equil =
9e2

4πε0

N∑
j=1
j 6=i

1

|z0
i − z0

j |5
. (C.33)

The equation of motion for the particle in the radial direction is a non-linear oscillator known
as the Duffing oscillator:

q̈i + ω2qi + εq3
i = 0 , (C.34)

where

ω2 = ω2
x −

∑
i 6=j

e2

4πε0

1

m

1

|zi − zj|3
, (C.35)

ε =
3e2

8πε0

1

m

∑
i 6=j

1

|zi − zj|5
. (C.36)

For a Duffing oscillator, the resonance frequency depends on the amplitude of the oscillations
[58].

∆ =
3εA2

8ω
. (C.37)
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Relative phase 𝜙 
Ramsey time

vs

Figure C.1: The schematic of Ramsey-type sequence that may be used to detect a small
non-linearity in the trapping potential. The ion is excited to a significant energy used
pulsed excitation with a saturated laser (top). The system evolves for a Ramsey time, after
which another series of pulsed excitations with a relative phase φ is applied. The result is
compared to the sequence with the exact same timing but less intense pulsed laser (bottom).
Any difference in the phase φ that minimizes the final energy corresponds to an additional
phase shift accumulated due the non-linearity present for large oscillation amplitudes.

Here, ∆ is the detuning of a driving field from the natural frequency ω that maximizes
oscillation amplitude A. For the derivation of this result, see equation 1.9 in [58] with
∆ = σε and αε→ ε.

We make the approximation that only the adjacent ion contributes and that the inter-ion
distance is given by the natural length-scale l defined in equation 4.11. We also assume
ω = ωy, then

ε =
3e2

8πε0

1

ml5
=

3

2

(
e2

4πε0m

)− 2
3

ω
10
3
z , (C.38)

and, hence,

∆ =
9

16

A2

ωy

(
e2

4πε0m

)− 2
3

ω
10
3
z . (C.39)

We compute that for radial frequency ωy = 2π × 2MHz, the shift in frequency due to the
non-linearity is rather small:

∆ = 2π × 67 Hz

(
A

1µm

)2(
ωz

2π × 200KHz

) 10
3

(C.40)

. If the ion is excited to significant energy with pulsed excitation, the non-linearity in the
potential may potentially be detected using a Ramsey technique presented in Figure C.1.
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