Experimental Quantum Information

Information processing according to the rules of quantum mechanics holds an enormous potential for future technologies. Realized in the Lab, it allows to experience quantum mechanics intuitively.

The lecture addresses all students, who want to understand the abstract concepts of quantum mechanics intuitively. We will discuss the most important experimental approaches for quantum information processing. Further ephasis will be given to implementations of the Deutsch-Josza algorithm and teleportation of quantum states.

Material

lecture notes (only from within the campus / please contact me in other cases).
Matlab toolbox to simulate ion trap quantum computers and to generate gate matricies can be found here (only from within the campus).
pdf slides about ion trap quantum computing.
More material (only from within the campus).
ARDA roadmap - Most recent evaluations of quantum computing approaches by the US Advanced Research and Development Activity.
qubit.org - Centre for quantum information: useful links and tutorials for quantum information.
qso.lanl.gov - The Los Alamos connection
www.answers.com - Interesting source for non-experts. You can find there also a proof of the no-cloning theorem by searching the site.

Lecture notes

www.theory.caltech.edu - by John Preskill
http.cs.berkeley.edu - by Umesh Vazirani
beige.ucs.indiana.edu -  by Zdzislaw Meglicki

Seminars

www.wmi.badw-muenchen.de  - Seminar on quantum information (good material on ion trap / NMR and superconducting quantum computation)

Implementations and Groups

 Linear optics quantum computing / quantum cryptography / Bell tests:
   plato.stanford.edu -  Good explanation on the nature of entanglement
   www.quantum.at - Photons for Bell-tests in Vienna (Anton Zeilinger)
   www.gap-optique.unige.ch - Photons for Bell-tests in Geneva (Nicholas Gisin) 

 Ion traps:
   www.lkb.ens.fr - Summer school Les Houches lectures by R. Blatt and D. Wineland
   www.boulder.nist.gov - Trapped ions for quantum information at  NIST /  Boulder (Dave Wineland)
   heart-c704.uibk.ac.at - Trapped ions for quantum information in Innsbruck (Rainer Blatt)
   www.qubit.org - Trapped ions for quantum information in Oxford (UK) (Andrew Steane / Derek Stacey)
   ww.imperial.ac.uk - Trapped ions in London (R. C. Thompson and D. M. Segal)
   monroelab2.physics.lsa.umich.edu - Trapped ions for quantum computation in Ann-Arbor (US) (Chris Monroe)
   www.phys.au.dk - Trapped ions in Aarhus (UK) (Michael Drewsen)
   www.physics.mcmaster.ca - Trapped ions in Canada (Brian King)

 Neutral atoms:
   www.quantum.physik.uni-mainz.de - Mott-states of neutral atom in 3-D optical lattices (Immanuel Bloch)
   www.iap.uni-bonn.de - Single neutral atoms in optical lattices (Dieter Meschede)
   www.iota.u-psud.fr - Single neutral atoms in optical dipole traps (Philippe Grangier)

 Cavity-QED:
   www.lkb.ens.fr - Quantum computing with Rydberg atoms in cavities (Serge Haroche)
   www.eng.yale.edu - Coupling a Cooper-pair box to a microwave cavity (Rob Schoelkopf / Andreas Wallraff)

 Superconducting qubits:
   www.wmi.badw.de  - Talk on superconducting qubits (in German)
   physicsweb.org - Review article for the "general public" by Hans Mooij
   www.labs.nec.co.jp - Cooper-pair boxes at NEC  (Jaw-Shen Tsai / Yasunobu Nakamura)
   qt.tn.tudelft.nl - Flux qubits with in Delft (Hans Mooij)
   www.eng.yale.edu - Coupling a Cooper-pair box to a microwave cavity (Rob Schoelkopf)
   www.solid.phys.ethz.ch - Coupling a Cooper-pair box to a microwave cavity (Andreas Wallraff)

 Quantum dots:
   qt.tn.tudelft.nl - Spin-qubits with quantum dots in Delft (L. Vandersypen / L. Kouwenhoven)

 NMR:
   nmr.physics.ox.ac.uk - Lecture notes on NMR quantum computing (J.A. Jones)


Remarks, criticism? E-mail: Hartmut Häffner